首页|基于视觉注意软池化的场景反光去除方法研究

基于视觉注意软池化的场景反光去除方法研究

扫码查看
为了优化图像中反光去除的效果,提出了一种基于视觉注意机制的软池化场景反光去除深度学习网络.该网络架构简洁、高效,通过融合视觉注意软池化理论与无反光干扰的闪光图像信息,实现了对透射图像的精确估计,从而高效地消除了反光.在广泛的实际场景测试中,该方法与其他几种主流去反光技术相比,不仅在视觉效果上更胜一筹,而且在去反光后图像质量的客观评价指标上也展现出了卓越的性能.
Study on Scene Anti-Reflection Removal Method Based on Visual Attention Soft Pooling
In order to optimize the utility of anti-reflection removal in images,this paper proposes a novel deep learning network for anti-reflection removal based on visual attention mechanism soft pooling.The network architecture is simple and efficient,and by integrating visual attention soft pooling theory and flash image information without interference,it a-chieves accurate estimation of the transmission image,thereby efficiently eliminating reflections.In a wide range of real-world scene tests,this method not only outperforms several mainstream anti-reflection techniques in terms of visual effects,but also demonstrates outstanding performance in objective evaluation indicators of image quality after anti-reflec-tion removal.

visual attentionpoolinganti-reflection removal

陈钢、邓晓飞、邓俊

展开 >

江苏明伟万盛科技有限公司,江苏 常州 213000

视觉注意 池化 去除反光

2024

电工技术
重庆西南信息有限公司(原科技部西南信息中心)

电工技术

影响因子:0.177
ISSN:1002-1388
年,卷(期):2024.(7)
  • 10