首页|基于孪生神经网络的变电站异物入侵检测方法

基于孪生神经网络的变电站异物入侵检测方法

扫码查看
针对传统异物入侵检测存在的问题,提出一种基于孪生神经网络的变电站异物入侵检测方法.用孪生神经网络进行运动前景提取,将背景图和待检图同时送入孪生神经网络,并且在后处理网络中引入注意力机制,最后通过连通域处理直接输出异物检测结果.此方法对异物没有预设检测类别的限制,另外设计的数据增强也进一步提高了算法抗抖动和抗光照变化能力.在测试数据集上取得的 98.35%的准确率和 98.61%的召回率证明了模型的有效性.
Substation Foreign Object Intrusion Detection Method Based on Siamese Neural Network
In view of the existing inadequacies of conventional foreign object intrusion detection,this paper proposes a sub-station foreign object intrusion detection method based on siamese neural network.The siamese neural network is used to extract the moving foreground.The background image and the image to be detected are input to the siamese neural net-work at the same time,and the attention mechanism is introduced into the post-processing network.Finally the connected domain processing is used to directly output the foreign object detection results.This method has no limitation on the pre-set detection category of foreign objects.In addition,the designed data enhancement also further improves the anti-jitter and anti-illumination change ability of the algorithm.An accuracy rate of 98.35%and a recall rate of 98.61%achieved on the test data set prove the effectiveness of the model.

foreign object intrusionsiamese neural networkattention mechanismfeature layer fusionsubstation

姬裕鹏、田鹏、柳杨、韩茂林、贾利伟

展开 >

长园深瑞继保自动化有限公司,广东 深圳 518052

异物入侵 孪生神经网络 注意力机制 特征层融合 变电站

2024

电工技术
重庆西南信息有限公司(原科技部西南信息中心)

电工技术

影响因子:0.177
ISSN:1002-1388
年,卷(期):2024.(9)
  • 22