首页|基于视觉感知的轨道交通站台间隙障碍物检测研究

基于视觉感知的轨道交通站台间隙障碍物检测研究

扫码查看
在传统残差卷积神经网络架构之上,提出了一种新颖的轨道交通站台间隙障碍物检测方法.该方法以视觉感知机制为核心,通过融入视觉感知策略,显著提升了视觉特征的表征能力,有效克服了光照变化和列车抖动导致的图像变异对站台间隙障碍物检测的影响.实际场景测试结果证实了该方法的简洁性与有效性,能大幅提升站台间隙障碍物的检测精度,从而降低对车辆和乘客造成的安全风险.
Study on Visual Perception-based Obstacle Detection in Platform Gap of Rail Transit
This study proposes a novel method for detecting obstacles in the gaps of rail transit platforms,which is based on the conventional residual convolutional neural network architecture and centered on a visual perception mechanism.By integrating visual perception strategies,this method significantly enhances the representational power of visual features and effectively overcomes the challenges posed by image variations due to changes in lighting and train vibrations.Experi-mental results from real-world scenario testing have confirmed the simplicity and effectiveness of this method,demonstra-ting its ability to significantly improve the detection accuracy of obstacles in platform gaps and potentially reduce safety risks to vehicles and passengers.

visual perceptionrail transitconvolutional neural networkvisual perception detection network

杨进、潘立康、陈钢

展开 >

常州地铁集团股份有限公司运营分公司,江苏 常州 213003

江苏明伟万盛科技有限公司,江苏 常州 213003

视觉感知 轨道交通 卷积神经网络 视觉感知检测网络

2024

电工技术
重庆西南信息有限公司(原科技部西南信息中心)

电工技术

影响因子:0.177
ISSN:1002-1388
年,卷(期):2024.(9)
  • 6