首页|基于BP神经网络的风机塔筒法兰螺栓紧固力预测

基于BP神经网络的风机塔筒法兰螺栓紧固力预测

扫码查看
为了解决对风机螺栓进行全覆盖实时监测而引起的成本高和监测效率低的问题,提出采用BP神经网络模型预测风电塔筒法兰螺栓紧固力.该网络由四层网络结构构成,以风电塔筒法兰上各个监测点螺栓紧固力值作为网络的输入,通过前向传播与反向传播依次迭代,最终完成模型训练过程.应用仿真数据的验证结果表明,与插值算法相比,使用BP神经网络预测风电塔筒法兰上螺栓紧固力的相关性提高 6.73%,绝对系数提高 15.53%,均方根误差下降59.95%.
BP Neural Network-based Prediction of Bolt Tightening Force for Wind Turbine Tower Flange
The present work aimed to addressing high cost and low efficiency in full-coverage real-time monitoring of wind turbine bolts,and proposed a back propagation(BP)neural network model to predict the bolt tightening force of wind tur-bine tower flange.The network consisted of a four-layer network structure,and took the bolt tightening force value of each monitoring point on the wind turbine flange as the input of the network,iterated in turn through forward propagation and reverse propagation,and thereby completed the model training process.The proposed BP neural network-based pre-dictive model was verified by simulation data to achieve an increase in correlation,an increase in absolute coefficient,and a reduction in root mean square error by 6.73%,15.53%,and59.95%,respectively,compared with the conventional inter-polation algorithm when predicting bolt tightening force on wind tower flange.

wind power generatortower flange bolttightening force predictionBP neural network

彭祺、王永千、马康乔、杨雨、吴越

展开 >

北京信息科技大学仪器科学与光电工程学院,北京 100192

风力发电机 塔筒法兰螺栓 紧固力预测 BP神经网络

北京市教育委员会科学研究计划项目

KM202211232014

2024

电工技术
重庆西南信息有限公司(原科技部西南信息中心)

电工技术

影响因子:0.177
ISSN:1002-1388
年,卷(期):2024.(11)