首页|基于ISSD-GRU模型的台区售电量预测方法

基于ISSD-GRU模型的台区售电量预测方法

扫码查看
针对台区售电量不确定影响因素多、预测精度不高的问题,提出了一种基于改进ISSD优化GRU神经网络的台区售电量预测方法,利用反向学习提高SSD算法对最优参数的搜索效率.以某地台区历史售电量、温度、工作日类型和节假日类型作为影响因素对GRU模型进行训练,利用ISSD算法实现对GRU隐藏层神经元个数和学习率超参数的寻优,构建用于台区售电量预测的ISSD-GRU模型.算例分析表明,ISSD-GRU模型在台区售电量预测结果上精度更高.
ISSD-GRU Model-based Electricity Sale Prediction
The present work made an attempt on addressing problems of excessive uncertainties-induced low accuracy in station area electricity sale prediction,and proposed a prediction method based on modified ISSD optimized GRU neural network which uses reverse learning to improve searching efficiency of the SSD algorithm for optimal parameters.The GRU model was trained with influences data such as historical electricity sales,temperature,working day type and holi-day type of a certain distribution station,and ISSD optimization algorithm was used to realize optimal searching of number of hidden layer neurons and hyperparameters of learning rate,thereby an ISSD-GRU model for electricity sale prediction was established.The proposed ISSD-GRU model was indicated by case analysis to have improved accuracy for predicting station area electricity sales.

OBLSSD algorithmGRU neural networkelectricity sale predictiontime sequenceprediction accuracy

刘成

展开 >

国网徐州市铜山区供电公司,江苏 徐州 221018

反向学习 SSD算法 GRU神经网络 售电量预测 时间序列 预测精度

国家电网公司总部科技项目

5108-202218280A-2-296-XG

2024

电工技术
重庆西南信息有限公司(原科技部西南信息中心)

电工技术

影响因子:0.177
ISSN:1002-1388
年,卷(期):2024.(11)