首页|基于多层支持向量机的蓄电池在线监测方法研究

基于多层支持向量机的蓄电池在线监测方法研究

扫码查看
常规的蓄电池在线监测节点一般采用独立或区域布设形式,监测的范围受限制,导致在线监测频率均值下降,因此探讨了基于多层支持向量机的蓄电池在线监测方法.根据当前测定,先进行蓄电池电动势及幵路电压应用数值采集,采用自适应的方式,打破监测范围的限制,部署自适应在线监测节点;然后构建多层支持向量机的蓄电池在线监测模型,采用持续跟踪预警处理强化在线监测.针对选定的 4 个蓄电池,按照顺序分别植入 0.8 mm、1.2 mm及2.1 mm的4个型号的电阻丝,形成不同的电阻率.经测定计算最终得出在线监测频率均值均可达到 150 Hz以上,说明设计的蓄电池在线监测方法更加稳定、安全,在不同环境下的整体适应度更强,监测效率得到了显著提升.
Study on Online Battery Monitoring Method Based on Multilayer Support Vector Machine
The online monitoring nodes for batteries are conventionally deployed in independent or regional forms which have limited monitoring ranges,resulting in a decrease in the obtained average online monitoring frequency.Therefore a design and validation study of a multi-layer support vector machine based online battery monitoring method is proposed.Based on the current measurement,first the values of battery electromotive force and circuit voltage are collected,and by adopting an adaptive approach,the adaptive online monitoring nodes are deployed.An online monitoring model for batter-ies using multi-layer support vector machines is constructed,with strengthened online monitoring through continuous tracking and early warning processing.The test results show that for the selected four batteries,three types of resistance wires with diameters of 0.8 mm,1.2 mm,and 2.1 mm are implanted in order to form different resistivities.After meas-urement and calculation,the average online monitoring frequency obtained can all reach 150 Hz or above.This indicates that the designed online monitoring method for batteries is more stable and safe,with stronger overall adaptability in dif-ferent environments and significantly improved monitoring efficiency.

multi-layer support vector machinebatteryonline monitoringdirectional identificationremote control

杨盛祥

展开 >

宁波北仑第三集装箱码头有限公司,浙江 宁波 315800

多层支持向量机 蓄电池 在线监测 定向识别 远程控制

2024

电工技术
重庆西南信息有限公司(原科技部西南信息中心)

电工技术

影响因子:0.177
ISSN:1002-1388
年,卷(期):2024.(11)