首页|集成NSGA-Ⅱ与IPSO算法的仓储货位分配多目标优化策略

集成NSGA-Ⅱ与IPSO算法的仓储货位分配多目标优化策略

扫码查看
优化仓储货位分配直接影响仓库运作效率和物流成本,为此提出了一种结合非支配排序遗传算法Ⅱ(NSGA-Ⅱ)与改进粒子群优化算法(IPSO)的多目标优化策略.通过深入分析货位分配的复杂性,构建了一个综合考量货物存取效率与存储空间利用率的多目标优化模型.对传统粒子群优化算法(PSO)进行改进,通过动态调整粒子的速度更新策略,显著提升了算法的全局搜索效率.将改进后的PSO算法与NSGA-Ⅱ算法集成,有效增强了解决方案的多样性和质量.经过对比分析,所提出策略在提高仓储效率和空间利用率方面有显著优势.
A Multi-Objective Optimization Strategy for Warehouse Location Allocation Integrating NSGA-Ⅱ and IPSO Algorithm
Optimizing warehouse location allocation directly affects warehousing efficiency and reduces logistics costs.This study proposes a multi-objective optimization strategy that combines NSGA-Ⅱ with IPSO.A multi-objective optimization model that comprehensively considers the efficiency of cargo load and unload space utilization was constructed by analyzing the complexity of location allocation in depth.The PSO algorithm was improved by dynamically adjusting the velocity up-date strategy of particles,significantly enhancing the global search efficiency of the algorithm.Integrating the IPSO algo-rithm with the NSGA-Ⅱ algorithm effectively enhanced the diversity and quality of solutions.After comparative analysis,the proposed strategy has significant advantages in improving warehousing efficiency and space utilization.

warehouse location allocationmulti objective optimizationNSGA-ⅡIPSO

冷文娟

展开 >

云南电网公司普洱供电局,云南 普洱 665000

仓储货位分配 多目标优化 NSGA-Ⅱ IPSO

2024

电工技术
重庆西南信息有限公司(原科技部西南信息中心)

电工技术

影响因子:0.177
ISSN:1002-1388
年,卷(期):2024.(12)
  • 6