首页|基于IGWO-MLP的变压器健康指数预测模型

基于IGWO-MLP的变压器健康指数预测模型

扫码查看
针对变压器健康指数(HI)预测,提出了基于主成分分析(PCA)特征选择的改进灰狼算法(IGWO)优化多层感知机(MLP)预测模型.以Kaggle公开数据集为例,通过PCA将15维输入特征降为相关性更高的10维特征,使用IGWO优化MLP得到最优参数,将参数输入MLP模型得到变压器健康指数并对其进行评估.实验结果显示,IGWO-MLP相较于GWO-MLP、IGWO-SVR、PSO-MLP和MLP模型,其预测精度更高,更能有效地预测变压器健康指数.
Transformer Health Index Prediction Model Based on IGWO-MLP
Aiming at the prediction of transformer health index (HI),this paper proposed an improved gray wolf algo-rithm (IGWO)optimized multilayer perceptron (MLP)prediction model based on principal component analysis (PCA) feature selection.Using the Kaggle public dataset as an example,the 15-dimensional features are reduced to 10-dimension-al features with higher correlation by PCA.The optimal parameters are obtained by optimizing the MLP using IGWO and further inputted into the MLP model to obtain transformer health index for estimation.The experimental results show that the IGWO-MLP has higher prediction accuracy than the GWO-MLP,IGWO-SVR,PSO-MLP and MLP models and is more effective in predicting the transformer health index.

transformerhealth indeximproved gray wolf algorithmchaotic mappingmultilayer perception machine

陈驻民、周丽芳

展开 >

上海第二工业大学计算机与信息工程学院,上海 201209

变压器 健康指数 改进灰狼算法 混沌映射 多层感知机

2024

电工技术
重庆西南信息有限公司(原科技部西南信息中心)

电工技术

影响因子:0.177
ISSN:1002-1388
年,卷(期):2024.(13)