首页|基于GA-BP神经网络的SF6/N2混合气体GIS设备故障诊断

基于GA-BP神经网络的SF6/N2混合气体GIS设备故障诊断

扫码查看
为实现SF6/N2混合气体GIS设备的潜伏性故障诊断,搭建实验平台探究SO2浓度与放电量之间的关系,以SO2浓度增量为输入参数之一,建立BP、GA-BP神经网络模型来预测四种缺陷类型下的放电量,分析预测结果后选取最优诊断算法.结果表明:每种缺陷类型下的放电量与SO2浓度之间呈现正相关性,GA-BP神经网络模型的预测准确率和拟合度分别为0.86和0.9386,平均相对误差为1.23%,在评估结果中占明显优势,可为SF6/N2混合气体GIS设备的潜伏性故障建立诊断算法提供基础性数据.
GA-BP Neural Network-based Fault Diagnosis GIS Equipment with SF6/N2 Gas Mixture
In order to diagnose latent faults in SF6/N2 gas mixture GIS equipment,an experimental platform was con-structed to explore the relationship between the content of SO2 gas detected by ultraviolet fluorescence method and the dis-charge quantity.BP and GA-BP neural networks were established to predict the discharge amount under four typical defect types,and the increase in SO2 concentration was added as one of the input parameters.The predictive results were com-pared and analyzed to select the optimal diagnostic algorithm.The results show that there is a positive correlation between the discharge quantity and the concentration of SO2 for each type of discharge defect.The prediction accuracy and fitting degree of the GA-BP neural network model are 0.86 and 0.9386 respectively,with an average relative error of 1.23%.The proposed method has a significant advantage with respect to evaluation results and can provide fundamental data for estab-lishing a diagnostic algorithm for latent faults in SF6/N2 gas mixture GIS equipment.

SF6/N2 gas mixturesulfur dioxide concentrationGA-BP neural network modellatent fault

梁璐、蒋延磊、曹心怡、苏鑫、郑俊洋、丁五行

展开 >

河南省电力公司平顶山供电公司,河南 平顶山 467000

泰普联合科技开发(北京)有限公司,北京 100096

SF6/N2混合气体 SO2浓度 GA-BP神经网络模型 潜伏性故障

2024

电工技术
重庆西南信息有限公司(原科技部西南信息中心)

电工技术

影响因子:0.177
ISSN:1002-1388
年,卷(期):2024.(13)