首页|基于神经网络控制算法的励磁系统研究

基于神经网络控制算法的励磁系统研究

扫码查看
传统PID算法可能在超调以及跟踪给定信号方面无法做到快速响应,但是随着人工智能以及MCU的快速发展,励磁系统可以使用其他更加智能的算法满足同步发电机的要求,从而增加系统稳定性与智能性.提出了一种使用BP神经网络算法优化的PID控制模型,其与传统PID算法相比响应速度更快,同时兼顾传统PID控制在稳定性方面的优势,在励磁系统中可以起到自动优化控制参数的作用.所提出的模型经MATLAB/Simulink仿真验证具有稳定性和更小的超调.
Study on Excitation System Based on Neural Network Control Algorithm
At present the conventional PID algorithm may not be able to respond quickly in terms of overshoot and track-ing given signals.However,with the rapid development of artificial intelligence and MCU,the excitation system can use other more intelligent algorithms to meet the requirements of synchronous generators,thereby improving stability and in-telligence of the system.A PID control model optimized by BP neural network algorithm is proposed here.Compared with the conventional PID algorithm,the corresponding speed is faster,while retaining the advantages of the conventional PID control in stability.It can play a role in the automatic optimization of control parameters in the excitation system.The model is verified by MATLAB/Simulink simulation to have satisfactory stability and smaller overshoot.

PID controlneural network algorithmexcitation systemMATLAB simulation

丰显忠

展开 >

四川大唐国际甘孜水电开发有限公司,四川 甘孜 626001

PID控制 神经网络算法 励磁系统 MATLAB仿真

2024

电工技术
重庆西南信息有限公司(原科技部西南信息中心)

电工技术

影响因子:0.177
ISSN:1002-1388
年,卷(期):2024.(13)