首页|基于Storm云平台的电力设备并行故障诊断方法

基于Storm云平台的电力设备并行故障诊断方法

扫码查看
为了实现电力行业多源数据的监测诊断,应对电力系统的实时处理需求,引入Storm分布式实时计算平台对数据进行处理.在此平台上部署基于混合聚类的流数据处理模型,实现数据流的故障诊断.通过将减法聚类算法和K-means算法结合实现流式数据的故障检测.减法聚类获取较优的聚类中心,而K-means算法根据此聚类中心计算出较好的分类结果.测试集群和单机的数据处理量的结果表明在集群环境下合理设置组件并行度可以提高流计算时效性和吞吐量.
Storm Cloud-based Parallel Fault Diagnosis for Power Equipment
In order to achieve monitoring and diagnosis of multi-source data in power industry and meet the requirements of power system real-time processing,the Storm distributed real-time computing platform was introduced to data process-ing.A mixed clustering based stream data processing model on this platform was deployed to achieve fault diagnosis of da-ta streams.By combining subtractive clustering algorithm with K-means algorithm,fault detection of streaming data was achieved,in which subtractive clustering obtained optimal cluster center,and K-means algorithm calculated out better classification results according to this cluster center.By testing the data processing capacity of clusters and single ma-chines,experiments have shown that setting component parallelism reasonably in a cluster environment can improve the efficiency and throughput of stream computing.

fault diagnosisStorm cloud platformsubtractive clusteringK-means

刘少伟

展开 >

南京国电南自电网自动化有限公司,江苏 南京 211153

故障诊断 Storm云平台 减法聚类 K-means

2024

电工技术
重庆西南信息有限公司(原科技部西南信息中心)

电工技术

影响因子:0.177
ISSN:1002-1388
年,卷(期):2024.(14)