首页|基于粒子群算法优化的汽车天窗改进型自抗扰控制

基于粒子群算法优化的汽车天窗改进型自抗扰控制

扫码查看
针对当前汽车天窗继电器闭合后,电动机控制天窗平移开闭、起翘开闭及防夹回退响应滞后问题,将内部不确定因素和外部环境干扰视为一个综合影响因素,提出了一种基于粒子群算法优化的改进型自抗扰控制方法,旨在改善汽车天窗的响应性能.首先,设计了一种新型cfal函数,解决了fal函数在拐点处不平滑容易引发抖动和控制系统不稳定的问题.接着,基于这种新型非线性cfal函数,构建了改进型扩张状态观测器,实现了对天窗扰动影响的实时估计.最后,采用粒子群算法进行内部参数优化调节,进行了汽车天窗系统的控制实验,并将该方法的输出响应曲线与传统ADRC控制进行了对比分析,实验结果验证了这种自抗扰控制方法在提升汽车天窗响应性能方面的优越性和可行性.
Particle Swarm-Optimized Active Anti-disturbance Control of Automobile Sunroof
In order to solve the problem of delayed response when the motor controls the opening and closing of sunroof after the relay is closed,the internal uncertainty factor and the external environment interference are considered as a com-prehensive influencing factor.Therefore,an modified active anti-disturbance control method based on particle swarm opti-mization is proposed to improve the response performance of vehicle sunroofs.First a new cfal function is designed to ad-dress its unsmoothness at the inflection point and the consequently resultant ease of jitter and instability of the control sys-tem.Then based on this new nonlinear cfal function,an improved extended state observer is constructed to achieve real-time estimation of skylight disturbance.Finally by using particle swarm algorithm,the internal parameters are optimized and the control experiment of automobile sunroof system is carried out.Comparative analysis on the output response curve with the conventional ADRC control verifies the superiority and feasibility of the proposed method in improving the re-sponse performance of sunroofs.

automobile sunroofactive anti-disturbance controlparticle swarm optimizationimproved extended state observer

张陆贤、陈邱卓

展开 >

安徽安健汽车天窗科技有限公司,安徽 芜湖 241000

安徽工程大学电气工程学院,安徽 芜湖 241000

汽车天窗 自抗扰控制 粒子群算法 改进型扩张状态观测器

2024

电工技术
重庆西南信息有限公司(原科技部西南信息中心)

电工技术

影响因子:0.177
ISSN:1002-1388
年,卷(期):2024.(16)