首页|生成对抗网络及其在短期负荷预测中的应用综述

生成对抗网络及其在短期负荷预测中的应用综述

扫码查看
电力系统面临多源、多维数据挑战.深度学习相较传统方法更适用于处理电力数据,具有强大的降维、非线性拟合和特征提取能力.生成对抗网络(Generative Adversarial Network,GAN)通过对抗性训练提升生成器和判别器性能,能有效预测短期日负荷、配电网负荷和电动汽车负荷.首先介绍了GAN的基本概念,分析了其优缺点;然后介绍了广泛应用于短期负荷预测的四类GAN衍生模型,并对GAN在短期负荷预测中的应用现状进行了细致的概述;最后展望了未来的应用前景.
A Review of Generative Adversarial Networks and Their Application to Short-Term Load Prediction
Power systems are facing the challenge of multi-source and multi-dimensional data.Deep learning is more suit-able for processing electric power data compared with conventional methods,with powerful capability of dimension reduc-tion,nonlinear fitting and feature extraction.Generative adversarial network (GAN)improves the performance of genera-tor and discriminator through adversarial training,and can effectively predict short-term daily load,distribution network load and electric vehicle load.This paper first outlines the basic concepts of GAN and analyzes its advantages and disadvan-tages.Then it describes four types of GAN-derived models that are widely used in short-term load prediction,and gives a detailed overview of the current status of modern applications of GAN in short-term load prediction.Finally it discusses the future application prospects.

deep learninggenerative adversarial networksshort-term load

张祖坤、朱瑞金、王纪元

展开 >

西藏农牧学院水利土木工程学院,西藏 林芝 860000

西藏农牧学院电气工程学院,西藏 林芝 860000

深度学习 生成对抗网络 短期负荷

2024

电工技术
重庆西南信息有限公司(原科技部西南信息中心)

电工技术

影响因子:0.177
ISSN:1002-1388
年,卷(期):2024.(16)