首页|考虑相似日相关信息的基于FCM-UW-ADAGRU的超短期光伏预测方法

考虑相似日相关信息的基于FCM-UW-ADAGRU的超短期光伏预测方法

扫码查看
提出了一种模糊C均值聚类和不确定性加权自适应门控单元神经网络(FCM-UW-ADAGRU)模型对日前分钟级光伏出力进行预测.首先,基于FCM对历史日天气进行划分,采用历史功率数据的5个统计指标(协调平均值、几何平均值、变异系数、峰度和偏度)作为聚类特征.其次,通过分布识别模块从相同天气类型的相似日样本中识别出不同的数据分布,并通过分布匹配模块从所有相似日数据中挖掘相关信息,以处理未来可能遇到的未知气象信息.最后,基于不确定性加权(UW)平衡预测误差和相关信息误差,提高模型训练精度.与现有方法的比较实验表明该方法具有较高的精度和鲁棒性,验证了模型的有效性.
FCM-UW-ADAGRU-based Ultra-short-term PV Prediction Considering Relevant Information of Similar Days
The present work studied and proposed a fuzzy C-means clustering and uncertainty-weighted adaptive gating u-nit neural network (FCM-UW-ADAGRU)model,aiming at the prediction of day-ahead minute-level PV output.First the historical daily weather was classified through FCM by using 5 statistical indexes of historical power data,i.e.coordinated mean,geometric mean,coefficient of variation,kurtosis,and skewness,as the clustering characteristics.Then different data distributions from similar day samples of the same weather type were identified by distribution recognition module,and the relevant information can be mined from all similar daily data through the distribution matching module,in order to deal with possible unknown meteorological information about the future.Finally balance prediction error and related infor-mation error based on uncertainty weighting (UW)were employed to improve model training accuracy.In a case study,the above method was compared to currently prevailing methods,demonstrating its higher accuracy and robustness,and verifying the effectiveness of the proposed model.

adaptive gating unit neural networkfuzzy C-means clusteringphotovoltaic ultra-short-term predictionsimilar day

施静辉、高翔、王瑞林

展开 >

远景能源有限公司,江苏 无锡 214441

深圳职业技术学院,广东 深圳 518055

上海电力大学电气工程学院,上海 200090

自适应门控单元神经网络 模糊C-均值聚类 光伏超短期预测 相似日

2024

电工技术
重庆西南信息有限公司(原科技部西南信息中心)

电工技术

影响因子:0.177
ISSN:1002-1388
年,卷(期):2024.(16)