首页|基于卷积神经网络的大型冷却塔风机故障识别方法

基于卷积神经网络的大型冷却塔风机故障识别方法

扫码查看
传统的大型冷却塔风机故障识别方法,只能计算冷却塔风机振动速度故障参数,并且冷却塔风机故障频域小于0,因此设计一种基于卷积神经网络的大型冷却塔风机故障识别方法.首先,构建冷却塔风机数据库,以实现对风机运行数据的实时监控和存储.然后,基于卷积神经网络设置输入数据约束、网络结构约束和训练过程约束等约束条件,以提高其性能和泛化能力.随后,计算冷却塔风机故障参数,如振动速度、加速度、频率成分等.最后,识别冷却塔风机故障频域,通过分析振动信号的频谱图,判断故障类型和程度.实验结果表明,设计的基于卷积神经网络的大型冷却塔风机故障识别方法的冷却塔风机故障频域均在冷却塔风机故障频域限值0以上,证明了所提方法能正确识别冷却塔风机故障,具有更好的准确性.
Convolutional Neural Network-based Fault Identification for Large Cooling Tower Fans
The conventional fault identification method of large cooling tower fan can only calculate the vibration speed fault parameters,and the fault frequency domain is less than 0.Therefore a fault identification method of large cooling tower fan based on convolutional neural network is designed in this paper.First the database of cooling tower fan is con-structed to realize real-time monitoring and storage of fan operation data.The input data constraint,network structure constraint and training process constraint are set based on convolutional neural network to improve its performance and generalization ability.Consequently cooling tower fan fault parameters,such as vibration speed,acceleration,frequency components,etc.,are calculated.Finally the fault frequency domain of cooling tower fan is identified,and the type and de-gree of fault are judged by analyzing the spectrum diagram of vibration signal.The experimental results show that the de-signed fault identification method can achieve fault frequency domain of cooling tower fans higher than the limit of 0,which proves that the proposed method is correct and has better accuracy for the fault identification of cooling tower fans.

convolutionneural networkcooling tower fanfaultidentification

汤逸敏

展开 >

英威达尼龙化工(中国)有限公司,上海 201507

卷积 神经网络 冷却塔风机 故障 识别

2024

电工技术
重庆西南信息有限公司(原科技部西南信息中心)

电工技术

影响因子:0.177
ISSN:1002-1388
年,卷(期):2024.(16)