首页|基于超高压输电线路智能巡检的建筑物提取方法研究

基于超高压输电线路智能巡检的建筑物提取方法研究

扫码查看
在超高压输电线路智能巡检过程中,提取卫星遥感影像中的建筑物至关重要.针对该任务提出一种细粒度特征融合的建筑物提取方法——U-DeepNet.该方法集成了Deeplab V3+与U-Net模型的优点,充分提取细粒度特征,确保密集排列的建筑物亦能被准确提取与区分开来.通过添加2个不同的残差U型块(RSU),增加了网络对小目标的灵敏感知,并使用不同维度的注意力机制,合理关注有效信息.在马萨诸塞州建筑物数据集上的实验验证了该方法的优越性.
Study on Building Extraction Method for Intelligent Inspection of Ultra High Voltage Transmission Lines
In the process of intelligent inspection of ultra-high voltage transmission lines,it is crucial to extract buildings from satellite remote sensing images.In this paper,we propose a fine-grained feature fusion building extraction method,U-DeepNet,which integrates the advantages of Deeplab V3+and U-Net model to fully extract fine-grained features and ensure that densely arranged buildings can be accurately extracted and distinguished.By adding two different residual U-block (RSU),it increases the network's sensitivity to small targets and uses an attention mechanism with different di-mensions to pay reasonable attention to effective information.The experimental validation on the Massachusetts building dataset indicates the superiority of the proposed method.

intelligent inspectionbuilding extractiondeep learningsemantic segmentation

翟春雨、张国君、任雅茹、王大鹏、白翔宇、陈顺华、林恒立

展开 >

内蒙古电力(集团)有限责任公司内蒙古超高压供电分公司,内蒙古 呼和浩特 010000

内蒙古大学,内蒙古 呼和浩特 010000

北京星视域科技有限公司,北京 100085

智能巡检 建筑物提取 深度学习 语义分割

2024

电工技术
重庆西南信息有限公司(原科技部西南信息中心)

电工技术

影响因子:0.177
ISSN:1002-1388
年,卷(期):2024.(16)