首页|基于迁徙变异粒子群算法的微电网调度优化策略

基于迁徙变异粒子群算法的微电网调度优化策略

Migrating Mutation Particle Swarm Algorithm-based Optimization of Microgrid Scheduling

扫码查看
微电网调度问题涉及多个电源和负荷因素,调控难度较大.通过建立微电网各电源系统的优化策略,并以分时电价为引导,旨在提高电动汽车充放电的积极性,从而有效提升微电网的调度优化能力.在传统粒子群算法的基础上,引入变异策略和迁徙策略,增强了算法的全局搜索能力,同时考虑了粒子种群的多样性,确保了模型对优化目标的求解能力.构建了以运行成本、用户满意度、电动车主费用为优化目标的多目标优化模型,并应用迁徙变异粒子群算法进行求解,结果表明该方法能显著降低系统运行成本,从 256.3 万元优化至 225.8 万元,电动车主费用从 3.25万元降至 2.13 万元,有效提升了用户满意度.与现有算法相比,该方法在效率和结果上均更优越,为类似问题提供了一种新的解决方案.
The scheduling of microgrid entails multiple source and load factors,and has a relatively high difficulty.Aiming at promoting microgrid scheduling,the present work made an attempt at establishing optimization strategy of each supply system of a microgrid and improving charging willingness of EV users by employing time-differential pricing.The intro-duction of mutation strategy and migration strategy to the conventional particle swarm optimization algorithm brought a-bout improved optimization ability,and the full consideration of diversity of particle population effectively ensured the model's ability of solving optimization objectives.Furthermore,an optimization model with multiple objectives,including operation cost,user satisfaction,and EV user expenditure,was established and solved by migration mutation particle swarm algorithm.The proposed method was indicated effective in improving user satisfaction,as it achieved obvious re-ductions in both system operation cost(from 2563000 Yuan to 2258000 Yuan)and EV user expenditure(from 32500 Yuan to 21300 Yuan).Compared with the previously proposed algorithms,this algorithm is superior in optimization effi-ciency and utility,and may become a potential solution for similar problems.

migrating mutation particle swarm algorithmsource-load interactionmicrogrid schedulingsystem optimi-zation

夏栋、花寅、苏标龙、周苏洋

展开 >

南瑞集团有限公司(国网电力科学研究院有限公司),江苏 南京 211106

国电南瑞科技股份有限公司,江苏 南京 211106

东南大学电气工程学院,江苏 南京 210018

迁徙变异粒子群算法 源荷互动 微电网调度 系统优化

2024

电工技术
重庆西南信息有限公司(原科技部西南信息中心)

电工技术

影响因子:0.177
ISSN:1002-1388
年,卷(期):2024.(17)