首页|基于深度学习的配电网NTL检测方法探究

基于深度学习的配电网NTL检测方法探究

扫码查看
为了更准确地检测配电网中的非技术损失(NTL),提出基于粒子群优化(PSO)算法和反向传播(BP)神经网络的检测方法.与传统的BP神经网络相比,PSO-BP神经网络在多个评价指标上表现出良好的性能,准确率、精确率、召回率、F1-Score及AUC值分别提高到86.98%、87.20%、86.68%、86.94%和86.65%.PSO算法的加入显著提高了网络权重和偏置值的优化程度,从而增强了模型对NTL的检测能力.
Deep Learning-based NTL Detection for Distribution Networks
Aiming at more accurate detection of non-technical losses(NTL),a detection method based on particle swarm optimization(PSO)algorithm and back propagation(BP)neural network is proposed.By comparing with conventional BP neural networks,PSO-BP neural networks have shown good performance indicated by multiple evaluation indicators,as accuracy,precision,recall,F1 Score,and AUC values have increased to 86.98%,87.20%,86.68%,86.94%,and 86.65%,respectively.The introduction of of PSO algorithm significantly improves the optimization of network weights and bias values,thereby enhancing the model's ability to detect NTL.

deep learningdistribution networknon-technical lossneural networksparticle swarm optimization

赵广旭、黄小燕

展开 >

许昌开普检测研究院股份有限公司,河南许昌 461000

许继电气股份有限公司,河南许昌 461000

深度学习 配电网 非技术损失 神经网络 粒子群算法

2024

电工技术
重庆西南信息有限公司(原科技部西南信息中心)

电工技术

影响因子:0.177
ISSN:1002-1388
年,卷(期):2024.(18)