首页|基于INGO-TCN-Attention的多特征短期负荷预测方法

基于INGO-TCN-Attention的多特征短期负荷预测方法

扫码查看
针对人工神经网络参数随机初始化给短期电力负荷预测带来的不足,提出一种基于改进北方苍鹰算法(Im-proved Northern Goshawk Optimization,INGO)优化时间卷积神经网络(Temporal Convolutional Networks,TCN)融合注意力机制(Attention)的短期负荷预测方法.首先采用多策略改进北方苍鹰算法,通过基准函数测试改进前后算法的性能,表明 INGO算法具有更好的寻优能力.最后,引入 INGO 算法对 TCN 进行优化,建立 INGO-TCN-Attention短期电力负荷预测模型.通过实例分析和实验对比,表明 INGO-TCN-Attention模型的稳定性和预测精度均优于其他模型.
INGO-TCN-Attention-based Multi-feature Short-term Load Forecasting
Aiming at addressing the shortcomings of short-term power load forecasting caused by random initialization of artificial neural network parameters,this work studied a short-term load forecasting method utilizing the temporal convo-lutional network optimized by improved northern goshawk optimization(INGO)and hybridized with the attention mecha-nism.The multi-strategy algorithm was used to improve the northern goshawk algorithm,and a test by benchmark func-tion verified the better optimization performance of the improved algorithm.Then the INGO algorithm was further intro-duced to TCN,and the INGO-TCN-Attention short-term power load forecasting model was established,which in the sub-sequent comparative experiment exhibited stability and prediction accuracy superior to other models.

INGOTCNattention mechanismshort-term load forecasting

张晓虎、欧科宏、游鑫、黄嘉懿

展开 >

湖南工业大学电气与信息工程学院,湖南 株洲 412000

改进北方苍鹰算法 时间卷积神经网络 注意力机制 短期负荷预测

2024

电工技术
重庆西南信息有限公司(原科技部西南信息中心)

电工技术

影响因子:0.177
ISSN:1002-1388
年,卷(期):2024.(19)