首页|基于Attention机制优化GRU混合神经网络的配电网负荷预测模型应用

基于Attention机制优化GRU混合神经网络的配电网负荷预测模型应用

Distribution Network Load Forecasting Based on Attention-mechanism-optimized GRU Hybrid Neural Network

扫码查看
随着全球能源需求的持续增长和环境保护意识的增强,配电网负荷预测成为电力系统运行和规划中的关键环节.为此提出了一种基于Attention机制优化的GRU混合神经网络模型,进一步提升配电网负荷预测的精度和鲁棒性.通过对传统 GRU模型和引入 Attention机制的 GRU模型进行比较,表明带 Attention机制的 GRU模型在预测精度和稳定性方面表现更优.在公开数据集上的测试结果显示,带Attention机制的GRU模型显著降低了预测误差,提高了预测精度,为智能配电网的高效运行提供了有力支持.
The continuous growth of global energy demand and the increasing awareness of environmental protection have made load forecasting in distribution networks a crucial part in operation and planning of power systems.The present work made a preliminary attempt to establish an attention-mechanism-optimized GRU hybrid neural network model to improve accuracy and robustness of distribution network load forecasting.The proposed model was verified by a test on public data-base,compared with conventional GRU model,superior in forecasting accuracy and stability,and thereby potentially con-ducive to efficient operation of smart distribution networks.

distribution networkload forecastingGRU neural networkAttention mechanismdeep learningtime se-ries forecasting

蒋军

展开 >

国网湖南省电力有限公司邵阳供电分公司,湖南 邵阳 422000

配电网 负荷预测 GRU神经网络 Attention机制 深度学习 时间序列预测

2024

电工技术
重庆西南信息有限公司(原科技部西南信息中心)

电工技术

影响因子:0.177
ISSN:1002-1388
年,卷(期):2024.(19)