首页|基于SSA-PFCM聚类算法的电力大数据异常检测

基于SSA-PFCM聚类算法的电力大数据异常检测

扫码查看
为提高电网数据异常检测可靠性,针对已有的 PFCM算法存在的聚类中心难以选择的问题,提出了一种将PFCM算法和SSA相结合的电力大数据异常检测方法.其中,SSA算法被用来优化 PFCM算法的初始中心.仿真验证表明改进后算法与传统算法相比具有优越性.
SSA-PFCM Clustering Algorithm-based Anomaly Detection from Electric Big Data
Aiming at improving the reliability of electric networks data detection and addressing the high difficulty of de-termining clustering center of the conventional possibilistic fuzzy c-means clustering method(PFCM),this work made a preliminary attempt to establish an anomaly detection method by combining PFCM and the sparrow search algorithm(SSA).The use of SSA was to optimize the initial center of PFCM.The modified algorithm was verified through compara-tive simulation to be superior to the conventional algorithm.

electric power big dataanomaly detectionPFCMSSA

孙畅、殷悦

展开 >

国网镇江供电公司,江苏 镇江 212000

电力大数据 异常检测 PFCM算法 SSA算法

2024

电工技术
重庆西南信息有限公司(原科技部西南信息中心)

电工技术

影响因子:0.177
ISSN:1002-1388
年,卷(期):2024.(19)