首页|基于XGBoost算法的输电线路绝缘子缺陷识别方法

基于XGBoost算法的输电线路绝缘子缺陷识别方法

扫码查看
由于输电线路绝缘子缺陷特征的差异性,导致识别效果难以得到保障,因此提出基于XGBoost算法的输电线路绝缘子缺陷识别方法.采用空间域法中的灰度变换和基于模板卷积的图像平滑技术对原始输电线路绝缘子图像进行具体的增强处理后,通过集成多个弱分类器(CART回归树)构建强分类器,并构建了包含损失函数和正则化项的XGBoost目标函数,通过泰勒展开和二阶导数信息求解输电线路绝缘子缺陷的最优解.在测试结果中,设计方法能够对大部分缺陷状态实现有效识别,对个别缺陷状态的未识别规模也在1.0%以内,具有良好的识别性能.
XGBoost-based Identification of Insulator Defects in Transmission Lines
The diversity of transmission line insulator defect characteristics largely affects their identification.The present work hence made a preliminary attempt to introduce XGBoost algorithm into the identification of transmission line insula-tor defects.The main efforts entailed first the enhancement processing of original insulator images via grayscale transfor-mation in spatial domain method and template convolution-based image smoothing technique,second the establishment of a strong classifier by integrating multiple weak classifiers (CART regression tree)and an XGBoost objective function con-taining loss function and normalization term,and third the optimum solution through Taylor expansion and second-order derivative information.The designed method achieved in the tentative test effective identification for most of the defects and false rate within 1.0% in a handful of cases,demonstrating potential identification utility.

XGBoost algorithmtransmission lineinsulator defectenhanced processingCART regression treeloss functionregularization termTaylor expansion

吴瑞琦

展开 >

湖南电力工程咨询有限公司,湖南 长沙 410001

XGBoost算法 输电线路 绝缘子缺陷 增强处理 CART回归树 损失函数 正则化项 泰勒展开

2024

电工技术
重庆西南信息有限公司(原科技部西南信息中心)

电工技术

影响因子:0.177
ISSN:1002-1388
年,卷(期):2024.(20)