首页|基于多天气特征的短期负荷预测模型研究

基于多天气特征的短期负荷预测模型研究

扫码查看
神经网络预测近年来逐渐成为电力负荷预测领域的研究热点,但缺乏对天气特征之间依赖关系的挖掘,且选取预测时长时无科学指导.针对电力负荷波动大、随机性强的特点,提出基于多天气特征的短期负荷预测模型.模型将7天定为最适预测尺度,使用基于RNN改进的LSTM深度神经网络对负荷数据和多种天气特征数据之间的关系进行深度挖掘.在基于当天实际天气与负荷数据进行的未来7天电力负荷预测实验中,模型取得了94.131%的预测准确率.
Multi-weather Feature-based Short-term Load Prediction Model
Neural network prediction has gradually become the prevailing hotspot in the field of electric load prediction in recent years,but there is still a lack of mining the dependency relationship among weather features,and no scientific guid-ance for selecting predictive time scale.The present work made a preliminary attempt to establish a multi-weather feature-based short-term load prediction model in view of the characteristics of large fluctuations and strong stochasticity of elec-tric load.The model was designed to select the optimal prediction scale of 7 days and employ a modified RNN-based LSTM deep neural network for the deep mining of the relationship between load data and various weather characteristic data.In an experimental predictive verification using actual daily data of weather and load carried out on a time scale of 7 days,the proposed model achieved a prediction accuracy as high as 94.131%.

electric load forecastingweather characteristicdeep miningoptimal predictive scale

李鑫、王哲、王文义、薛腾、邢梓豪、谢华辰

展开 >

输配电装备及系统安全与新技术国家重点实验室(重庆大学),重庆 400044

国网山东省电力公司平邑县供电公司,山东 临沂 273300

国网山东省电力公司费县供电公司,山东 临沂 273400

电力负荷预测 天气特征 深度挖掘 最适预测尺度

2024

电工技术
重庆西南信息有限公司(原科技部西南信息中心)

电工技术

影响因子:0.177
ISSN:1002-1388
年,卷(期):2024.(20)