首页|基于改进Transformer模型的短期风电功率预测

基于改进Transformer模型的短期风电功率预测

扫码查看
针对风电功率预测准确率不高的问题,建立了基于多元特征的降噪Transformer模型,对短期风电功率进行预测.首先介绍了一种通过计算特征的贡献来解释机器学习模型预测结果的Shapley Additive exPlanations(SHAP)模型,以此描述多元特征对模型输出的贡献度.其次分析了 Transformer模型的结构及预测原理,并针对原始数据夹杂大量噪声这一缺陷,在传统Transformer预测模型基础上增加去噪环节,建立基于改进Transformer模型的短期风电功率预测模型,凭借噪声学习过程获取有效数据,提高预测模型的鲁棒性.最后引入江苏省某风电场实测数据对多种模型的预测效果进行对比,验证了所提出方法的有效性.
Modified Transformer Model-based Short-term Power Forecasting of Wind Generations
In view of the low accuracy of power forecasting of wind generations,this paper establishes a denoising Trans-former model based on multiple features.First a Shapley Additive exPlanations(SHAP)model is proposed,which ex-plains the forecasting results of machine learning models by calculating the contributions of features,so as to describe the contributions of various features to the model output.Second the structure and forecasting principle of Transformer model are analyzed,and modifications are made to address the defect of large amount of noise in the original data by adding a de-noising part to the conventional Transformer model,thereby establishing the modified forecasting model.Using the noise learning process to obtain effective data,the robustness of the forecasting model is improved.Finally the measured data of a wind farm in Jiangsu province are introduced to compare the performances of various models,and the effectiveness of the proposed method is verified.

wind power generationpower forecastingSHAP analysisdenoising Transformer model

陈月强、伍磊、黄桦

展开 >

南京工程学院电力工程学院,江苏南京 210000

风力发电 功率预测 SHAP分析 降噪Transformer模型

2024

电工技术
重庆西南信息有限公司(原科技部西南信息中心)

电工技术

影响因子:0.177
ISSN:1002-1388
年,卷(期):2024.(22)