首页|基于改进多核极限学习机算法的电力负荷预测方法研究

基于改进多核极限学习机算法的电力负荷预测方法研究

扫码查看
提出一种基于变分模态分解技术结合粒子群与遗传算法优化的多核极限学习机模型用于电力负荷预测.该模型能够将原始电力负荷序列分解为不同频率的子序列,并将子序列分别与改进后的多核极限学习机预测模型相结合,重构各个子序列得到最终预测结果.针对单核极限学习机难以表征多负荷数据的特征问题,采用多核极限学习机进行预测,加强了负荷模型在不同特征下的全局搜索能力.使用某地区实际负荷数据进行对比测试,结果表明所建立的负荷预测模型能够得到更精确的预测结果.
Modified Multi-kernel Extreme Learning Machine-based Electric Load Prediction
This work made a preliminary attempt to combine the multi-kernel extreme learning machine with variational modal decomposition and PSO-GA for electric load prediction.The model was designed to decompose the original electric load sequence into sub-sequences with different frequencies,and to integrate the sub-sequences with the modified multi-kernel extreme learning machine,thereby achieving reconstruction of the sub-sequences and obtaining the final prediction result.The adoption of the multi-kernel extreme learning machine could enhance the global search ability of the model for different features when coping with multi-feature load data,which were difficult to characterize using uni-kernel extreme machine.In a comparative test using load data of an actual region,the predictive model established in this work achieved more accurate prediction result than those from the selected reference short-term predictive models.

variational modal decompositionload predictionmulti-kernel extreme learning machineparticle swarm and genetic algorithm

保拉、李庆兵、侯保建、李知晓

展开 >

国网信息通信产业集团有限公司,北京 100000

北京国网信通埃森哲信息技术有限公司,北京 100000

北京工业大学-都柏林国际学院,北京 100000

变分模态分解 负荷预测 多核极限学习机 粒子群与遗传算法

2024

电工技术
重庆西南信息有限公司(原科技部西南信息中心)

电工技术

影响因子:0.177
ISSN:1002-1388
年,卷(期):2024.(22)