首页|基于PSO优化VMD-LSTM的直流测量装置误差趋势预测

基于PSO优化VMD-LSTM的直流测量装置误差趋势预测

扫码查看
以光学电流互感器(OCT)为代表的电子式直流测量装置在直流输电工程中得到了广泛应用,但随着运行时间增加,其测量误差可能出现越限,因此有必要对其测量误差进行预测.基于分解-寻优-预测-重构路径,提出一种粒子群优化算法(PSO)优化的变分模态分解(VMD)-长短时记忆网络(LSTM)混合预测模型进行误差趋势多步预测.首先用 VMD将历史误差序列分解为多个子序列,再用 PSO 对各个子序列的预测模型超参数进行寻优,然后用 LSTM对子序列进行预测,最后叠加各预测值得到最终预测结果.对某换流站 OCT测量误差进行预测,结果表明所提模型相较其他预测模型有更高精度.
PSO-optimized VMD-LSTM-based Prediction of Deviation Trend of DC Measurement Device
Electronic direct current measurement devices represented by optical current transformers(OCTs),have found extensive applications in direct-current transmission engineering.However,with increasing operating time,there may be a risk of deviation violation,necessitating the prediction of measurement deviations.Based on the decomposition-optimiza-tion-prediction-reconstruction approach,a hybrid prediction model of particle swarm optimized(PSO)variational mode decomposition(VMD)-long short-term memory(LSTM)was proposed in this work for multi-step prediction of deviation trends.First the historical deviation sequence was decomposed into multiple sub-sequences using the VMD and then the hyperparameters of the prediction models for each sub-sequence were optimized by PSO.Subsequently the prediction of sub-sequences was carried out through LSTM and the predicted values were aggregated to obtain the ultimate prediction result.The prediction of measurement deviations for an OCT in a converter station was conducted,and the results indica-ted the superior prediction accuracy of the proposed model compared to several selected prediction models.

multi-step predictionlong short-term memory networkparticle swarm optimizationvariational mode decomposition

罗强、自越华、颜俊、徐天奇

展开 >

江苏凌创电气自动化股份有限公司,江苏 镇江 212000

华能龙开口水电有限公司,云南 大理 671506

中国三峡武汉科创园,湖北 武汉 430010

云南省高校电力信息物理融合系统重点实验室(云南民族大学),云南 昆明 650504

展开 >

多步预测 长短时记忆网络 粒子群优化算法 变分模态分解

2024

电工技术
重庆西南信息有限公司(原科技部西南信息中心)

电工技术

影响因子:0.177
ISSN:1002-1388
年,卷(期):2024.(23)