首页|基于改进PSO优化的SDAE-BP暂降类型识别方法

基于改进PSO优化的SDAE-BP暂降类型识别方法

扫码查看
提供了一种基于改进PSO(粒子群算法)优化的SDAE-BP暂降类型识别方法,利用深度学习中的堆叠降噪自编码器(SDAE)提取电压暂降信号特征,通过BP神经网络对暂降数据进行分类识别,解决人为提取特征时受未知特征和噪声影响的问题;使用改进PSO算法优化SDAE-BP网络参数,自适应选取优化参数,提升网络泛化能力,提高暂降类型识别的准确率.
SDAE-BP Sag Type Identification Method Based on Improved PSO Optimization
In this paper,an optimization method of SDAE-BP sag type recognition based on improved PSO(particle swarm optimization)is proposed.The stackable noise reduction autoencoder(SDAE)in deep learning is used to extract voltage sag signal features,and BP neural network is used to classify the sag data,which solves the problem of unknown features and noise during artificial feature extraction.The improved PSO algorithm was used to optimize SDAE-BP net-work parameters,and the optimization parameters were selected adaptively to improve the network generalization ability and the accuracy of sag type recognition.

voltage sag type identificationimprove PSOSDAEBP

张金娈、张鑫、杨柳青、孙腾达

展开 >

国电南瑞南京控制系统有限公司,江苏 南京 211000

国电南瑞科技股份有限公司,江苏 南京 211000

暂降类型识别 改进PSO SDAE BP

2024

电工技术
重庆西南信息有限公司(原科技部西南信息中心)

电工技术

影响因子:0.177
ISSN:1002-1388
年,卷(期):2024.(23)