首页|基于CNN-GRU神经网络的电缆放电电流识别技术研究

基于CNN-GRU神经网络的电缆放电电流识别技术研究

Research on Cable Discharge Current Recognition Technology Based on CNN-GRU Neural Network

扫码查看
电缆放电是电力系统中常见的故障问题之一,准确识别放电电流信号有助于提前预防重大电力事故的发生.为此提出一种基于卷积神经网络(CNN)与门控循环单元(GRU)的混合神经网络模型,用于电缆放电电流信号的识别.通过卷积神经网络提取放电信号的时空特征,并利用 GRU处理时间序列信息,实现对不同类型放电信号的分类.实验结果表明,该方法在准确率和鲁棒性方面优于传统的放电信号处理方法.
The phenomenon of cable discharge is one of the common fault issues in power systems,and accurately identif-ying discharge current signals helps prevent major power accidents in advance.This paper proposes a hybrid neural net-work model based on Convolutional Neural Networks(CNN)and Gated Recurrent Units(GRU)for the identification of cable discharge current signals.The CNN is employed to extract spatiotemporal features from the discharge signals,while the GRU is used to process the temporal sequence information,enabling classification of different types of discharge sig-nals.Experimental results show that this method outperforms traditional discharge signal processing techniques in terms of accuracy and robustness.

Convolutional Neural NetworkGated Recurrent Unitcable dischargesignal identificationdeep learning

薛宏涛、宋红英、周小华、周建、袁雪松、舒文雄

展开 >

国网达州供电公司,四川 达州 635000

卷积神经网络 门控循环单元 电缆放电 信号识别 深度学习

2024

电工技术
重庆西南信息有限公司(原科技部西南信息中心)

电工技术

影响因子:0.177
ISSN:1002-1388
年,卷(期):2024.(23)