首页|基于LSTM-FCN神经网络的船舶电力直驱推进装置故障识别

基于LSTM-FCN神经网络的船舶电力直驱推进装置故障识别

扫码查看
由于船舶推进装置长期处于恶劣的水下环境中工作,在航行过程中难免会出现运行故障,影响整个船舶的稳定性,因此提出基于 LSTM-FCN神经网络的船舶电力直驱推进装置故障识别.从船舶电力直驱推进装置的定子电流信号中提取出频率分量作为故障特征,将 LSTM和FCN结合在一起构建混合神经网络模型,输入提取的故障特征分量,实现对船舶电力直驱推进装置故障类型的识别.实验结果表明,LSTM-FCN 神经网络识别船舶电力直驱推进装置故障类型的准确率高达 98.43%,证实了该方法是可行且可靠的.
LSTM-FCN Neural Network-based Fault Identification for Ship Electrified Direct-drive Propulsion Systems
Long-term operation of ship propulsion systems in harsh underwater environments makes them inevitably en-counter operational faults during navigation which consequently harm stability of the entire ship.In view of this the present study focused on a LSTM-FCN neural network-based fault identification method for ship electrified direct-drive propulsion systems.The major work entailed extracting frequency components from the stator current signals as fault characteristics,combining LSTM and FCN to construct a hybrid neural network model,and inputting the extracted characteristic compo-nents into the model to achieve fault type identification.The proposed method achieved in the experiment a high fault iden-tification accuracy of 98.43%,and thereby was verified feasible and reliable.

LSTM-FCN neural networkship electrified direct-drive propulsion devicefault identification

范大鸣

展开 >

渤海船舶职业学院,辽宁 葫芦岛 125100

LSTM-FCN神经网络 船舶电力直驱推进装置 故障识别

2024

电工技术
重庆西南信息有限公司(原科技部西南信息中心)

电工技术

影响因子:0.177
ISSN:1002-1388
年,卷(期):2024.(23)