首页|基于SSA-CNN的电力变压器故障智能诊断方法

基于SSA-CNN的电力变压器故障智能诊断方法

扫码查看
故障诊断是电力变压器运维过程中的必要环节,油中溶解气体分析是判断电力变压器故障类型的最有效方法之一.以油中溶解气体分析为核心,提出一种基于麻雀搜索算法优化卷积神经网络(SSA-CNN)的电力变压器故障智能诊断方法.由于当前主流采用的人工选取卷积神经网络(CNN)模型超参数会影响诊断结果的精准程度,因此引入麻雀搜索算法(SSA)实现卷积神经网络中的超参数寻优.实验测试结果表明,与传统的人工智能方法相比,经过麻雀搜索算法优化后的卷积神经网络在电力变压器故障诊断中准确率更高,同时具有更高的寻优效率.
Intelligent Fault Diagnosis Method of Power Transformer Based on SSA-CNN
The stable operation of power transformers is crucial for the safety of the power system.Fault diagnosis of power transformers is a necessary step in their operation and maintenance process.Dissolved Gas Analysis(DGA)in oil is one of the most effective methods to determine the type of fault in power transformers.With dissolved gas analysis in oil as the core,a smart diagnosis method for power transformer faults based on Sparrow Search Algorithm to Convolutional Neural Network(SSA-CNN)optimization is proposed.Due to the current mainstream approach of manually selecting hy-perparameters in convolutional neural networks(CNN)models,which can lead to inaccurate diagnostic results,this paper introduces the Sparrow Search Algorithm(SSA)to achieve hyperparameter optimization in convolutional neural networks.The experimental test results show that compared with traditional artificial intelligence methods,the convolutional neural network optimized by the sparrow search algorithm has higher accuracy in power transformer fault diagnosis and higher optimization efficiency.

power transformerfault diagnosisCNNSSAhyperparameter search optimization

孔博、赵占军、郭海波、杨沛豪

展开 >

国网内蒙古东部电力有限公司通辽供电公司,内蒙古 通辽 028000

国网内蒙古超特高压公司,内蒙古 锡林浩特 010020

西安热工研究院有限公司,陕西 西安 710054

电力变压器 故障诊断 卷积神经网络 麻雀搜索算法 超参数寻优

2024

电工技术
重庆西南信息有限公司(原科技部西南信息中心)

电工技术

影响因子:0.177
ISSN:1002-1388
年,卷(期):2024.(23)