首页|基于改进Faster-RCNN的绝缘子缺陷检测模型

基于改进Faster-RCNN的绝缘子缺陷检测模型

扫码查看
针对在室外复杂背景下绝缘子缺陷识别准确率低的问题,提出了一种改进的 Faster-RCNN 算法,该算法使用 ResNet50+FPN替代了原始的骨干网络,并在网络中引入 CBAM注意力机制.之后使用 K-mean算法定制了锚选框的尺寸,提升对小目标的检测精度.采用在COCO数据集上训练的权重来进行迁移学习.实验结果表明,改进模型相比于原算法,对绝缘子各类缺陷的平均检测精度提升了 4.4%,具有一定的工程应用潜力.
Insulator Defect Detection Model Based on Improved Faster-RCNN
Aiming at the problem of low accuracy in identifying insulator defects under complex outdoor backgrounds,this paper proposes an improved Faster-RCNN algorithm,which uses ResNet50+FPN to replace the original backbone net-work and introduces the CBAM attention mechanism into the network.Then the K-mean algorithm was used to customize the size of the anchor box to improve the detection accuracy of small targets.Transfer learning is performed using weights trained on the COCO dataset.Experimental results show that compared with the original algorithm,the improved model improves the average detection accuracy of various types of insulator defects by 4.4%,which has certain engineering refer-ence value.

insulatorobject detectiontransfer learningFaster-RCNN

张涛

展开 >

安徽理工大学电气与信息工程学院,安徽 淮南 232001

绝缘子 目标检测 迁移学习 Faster-RCNN

2024

电工技术
重庆西南信息有限公司(原科技部西南信息中心)

电工技术

影响因子:0.177
ISSN:1002-1388
年,卷(期):2024.(23)