首页|一种基于数字孪生的灰盒单相PWM整流器建模与健康参数监测方法

一种基于数字孪生的灰盒单相PWM整流器建模与健康参数监测方法

扫码查看
基于单相两电平脉宽调制(PWM)整流器工作原理及其闭环控制策略,建立其离散化数学模型,并考虑实际工程应用中控制参数未知的情况,结合整流器外特性实验数据,依托优化粒子群算法(PSO),构建单相PWM整流器数字孪生灰盒模型.该模型可依据当前实测外特性数据,准确地监测控制参数和表征健康状态的关键参数,进而实现对实际整流系统的运行特性跟踪与模拟,该方法可为整流系统的非侵入式健康状态监测提供可能,并可用于指导实际系统中控制参数优化.为验证数字孪生灰盒模型及监测方法的正确性与有效性,该文在不同参数和多种工况下开展了模型验证与监测实验.结果表明,所建模型具有对实际整流器外部运行特性的模拟能力,监测误差小于 5%且能够识别参数变化趋势.同时也探究了不同智能优化算法对监测性能的影响,论证了优化粒子群算法在此应用条件下的优越性.
A Gray-Box Single-Phase PWM Rectifier Modeling and Health Parameter Monitoring Method Based on Digital Twins
Since single-phase,two-level PWM rectifiers are widely used and undertake important functions,their working conditions are complex,and the operating environment is variable.Therefore,the demand for their reliability in engineering application sites has gradually increased,and the problem of accurate monitoring and evaluation of reliability urgently needs to be solved.Non-invasive monitoring is a better choice to reduce the impact on the original system during system status monitoring.Considering the situation of unknown system control parameters in practical applications,this paper proposes a digital twin gray-box model for single-phase,two-level PWM rectifiers.This model can simulate the external voltage and current characteristics of actual rectification systems,achieving non-invasive monitoring of the control parameters of the system and key parameters of the main circuit.Firstly,a digital twin gray-box model of single-phase,two-level PWM rectifiers has been established.A mathematical model of the main circuit is established.Combined with the mathematical model of the corresponding closed-loop control system and the sampling part in the actual system,a discretized mathematical model of the closed-loop rectification system can be obtained using the fourth-order Runge-Kutta method for discretization.Based on the actual rectification circuit's external voltage and current data,an improved particle swarm optimization algorithm is used to iterate the discrete mathematical model.The parameters in iterations include system control parameters and health status characteristic parameters.When the external characteristics of the discrete mathematical model approximate the actual circuit,the final digital twin gray-box model has been obtained.Secondly,system control parameters and health status characteristic parameters are monitored.Due to the unknown control parameters,the control parameters are introduced as the measured values during the algorithm iteration when establishing the digital twin gray-box model.Based on the external characteristic data of the actual system,the control parameters can be well monitored,making the digital twin model similar to the actual system.Meanwhile,key parameters of the main circuit are the focus of monitoring,i.e.,the equivalent inductance L and resistance R of the AC-side inductor,the capacitance C of the DC-side supporting capacitor,and the saturation voltage drop of IGBT.Finally,the digital twin gray-box model and parameter monitoring method have been validated under different parameters and operating conditions.The results indicate that the established model can simulate the actual system's dynamic and static operating states.At the same time,the control parameters and key parameters are effectively monitored,the errors are less than 5%,and the changing trend of parameters can be identified.In addition,the influence of different intelligent optimization algorithms on monitoring performance is explored,considering algorithm complexity,average iterations,and local optimal escaping ability.The superiority of the particle swarm optimization algorithm under the application conditions has been demonstrated.

Single-phase PWM rectifierdigital twingray-box modelcondition monitoringIGBT

张思慧、宋文胜、唐涛、邹宇超、张志伟

展开 >

西南交通大学电气工程学院 成都 710049

单相PWM整流器 数字孪生 灰盒模型 状态监测 IGBT

2025

电工技术学报
中国电工技术学会

电工技术学报

北大核心
影响因子:2.593
ISSN:1000-6753
年,卷(期):2025.40(2)