首页|基于改进Yolov5的LCD缺陷检测

基于改进Yolov5的LCD缺陷检测

扫码查看
为提高液晶显示屏缺陷检测的速度和精度,设计了一种基于深度学习的液晶显示屏缺陷检测系统.针对实时检测系统中的Yolov5 检测算法存在对全局信息的提取能力不足问题,在Transformer架构和C3 模块基础上构建了C3TR模块并将其加入Yolov5 基础模型.实验结果表明,所提出的算法在准确率和召回率上分别达到了90.9%和90.3%,与Yolov5 基础算法相比分别提高了4.1%和1.4%.
LCD Defect Detection Based on Improved Yolov5
In order to improve the speed and accuracy of LCD defect detection,this paper designs an system for LCD defect detection based on deep learning.Aiming at the problem that the Yolov5 detection algorithm in the real-time detection system has in-sufficient ability to extract global information,this paper constructs the C3TR module based on the Transformer architecture and C3 module and adds it to the Yolov5 basic model.Experimental results show that the proposed algorithm reaches 90.9%and 90.3%in accuracy and recall,respectively,which is improved by 4.1%and 1.4%compared with Yolov5 basic algorithm,respectively.

deep learningdefect detectionLCD displayYolo

莫文星、刘华珠

展开 >

东莞理工学院 计算机科学与技术学院,广东东莞 523808

东莞理工学院 国际微电子学院,广东东莞 523808

深度学习 缺陷检测 液晶显示屏 Yolo

东莞市科技特派员项目

20221800500112

2024

东莞理工学院学报
东莞理工学院

东莞理工学院学报

影响因子:0.265
ISSN:1009-0312
年,卷(期):2024.31(1)
  • 12