首页|基于机械臂运动轨迹控制双生成对抗网络的设计

基于机械臂运动轨迹控制双生成对抗网络的设计

扫码查看
为了提高机械臂的运动准确性,以改善机械臂的工作效率,设计了一种用于机械臂运动轨迹控制的双生成对抗网络.首先,对机械臂的结构进行了分析,根据机械臂的结构特点建立了机械臂的坐标系,在该坐标系上,通过机械臂各关节点的变换矩阵,求取了机械臂的运动学方程;然后,将机械臂末端执行器的位置向量、关节速度等信息与编码器相结合,以获取双向生成性对抗网络,并在双向生成性对抗网络的基础上,设计了双生成对抗网络,以对机械臂的运动轨迹进行控制;最后,利用所提方法与干扰观测器方法对机械臂的运动轨迹进行控制测试.测试结果显示,所提方法的控制准确度比干扰观测器方法的控制准确度提高了40.13%,而且所提方法控制机械臂运动过程中,出现的波动也比干扰观测器方法的控制过程要小.说明所提方法不仅能较为准确地控制机械臂运动,而且控制过程较为平稳,有助于提高机械臂的工作效率.
Design of a Dual-generated Adversarial Network for Mechanical Arm Motion Trajectory Control
In order to improve the motion accuracy of the robotic arm and improve its work efficiency, this paper designs a dual generation adversarial network for controlling the trajectory of the robotic arm. Firstly, the structure of the robotic arm is ana-lyzed, and the coordinate system of the robotic arm is established according to the structural characteristics of the robotic arm of the robotic arm. Then, the information such as position vectors and joint velocity of the mechanical arm are combined with the encoder to obtain the bidirectional generative adversarial network, and the network is designed to control the movement trajectory of the me-chanical arm. Finally, control tests are conducted on the motion trajectory of the robotic arm by using the proposed method and the disturbance observer method. The test results showed that the control accuracy of the proposed method is 40.13% higher than that of the disturbance observer method, and the fluctuations observed during the control of the robotic arm movement using the proposed method are also smaller than the interference observer method control process. It shows that the proposed method can not only control the movement of the robotic arm more accurately, but also stabilize the control process, which helps to improve the working efficien-cy of the robotic arm.

mechanical armmotion trackdual-generated adversarial networkstrajectory control

陈振伟

展开 >

安徽矿业职业技术学院 考试信息中心, 安徽淮北 235000

安徽淮北煤电技师学院 考试信息中心, 安徽淮北 235000

机械臂 运动轨迹 双生成对抗网络 轨迹控制

安徽省高等学校省级质量工程项目

2021jyxm0344

2024

东莞理工学院学报
东莞理工学院

东莞理工学院学报

影响因子:0.265
ISSN:1009-0312
年,卷(期):2024.31(3)