首页|基于自适应变异粒子群算法的无人机航迹规划

基于自适应变异粒子群算法的无人机航迹规划

扫码查看
提出一种基于自适应粒子群算法的航迹规划方法.航迹规划是低空突防过程中的关键技术,目的是得到一条既安全可靠又全局代价最优的三维航迹.针对基本粒子群优化算法容易陷入局部极值、进化后期的收敛速度慢和精度低等缺点,采用自适应粒子群优化算法,仿真结果表明该方法能够快速有效地完成规划任务,获得满意的三维航迹.
Route Planning for Unmanned Aerial Vehicles Based on Adaptive Mutation Particle Swarm Optimization
Flight route planning is a key technology in low-altitude penetration, which is used for obtaining a safe, reliable and global optimal three-dimensional flight route. A new route planning method was put forward based on an adaptive mutation particle swarm optimization. The basic particle swarm optimization has some defects, such as being liable to get into local extremum, slow convergence velocity and low convergence precision in the late evolutionary. An adaptive mutation particle swarm optimization can overcome the defects of the basic particle swarm optimization. The simulation results demonstrated that this method can implement route planning rapidly and efficiently and get a desired 3D path.

unmanned aerial vehicleroute planningadaptive particle swarmlow-altitude penetration

黄国荣、张吉广、刘华伟

展开 >

空军工程大学工程学院,西安,710038

无人机 航迹规划 自适应粒子群 低空突防

国家自然科学基金

60304004

2009

电光与控制
中国航空工业洛阳电光设备研究所

电光与控制

CSTPCD北大核心
影响因子:0.424
ISSN:1671-637X
年,卷(期):2009.16(4)
  • 2
  • 4