首页|特征增强的Sparse Transformer目标跟踪算法

特征增强的Sparse Transformer目标跟踪算法

扫码查看
针对Transformer的自注意力机制计算量大、容易被背景分心,导致有效信息抓取不足,从而降低跟踪性能的问题,提出特征增强的Sparse Transformer目标跟踪算法.基于孪生网络骨干进行特征提取;特征增强模块利用多尺度特征图生成的上下文信息,增强目标局部特征;利用Sparse Transformer的最相关特性生成目标聚焦特征,并嵌入位置编码提升跟踪定位的精度.提出的跟踪模型以端到端的方式进行训练,在OTB100,VOT2018 和LaSOT等5 个数据集上进行了大量实验,实验结果表明所提算法取得了较好的跟踪性能,实时跟踪速度为34 帧/s.
A Feature-Enhanced Sparse Transformer Target Tracking Algorithm
Transformer's self-attention mechanism is computationally intensive and prone to be distracted by the background,resulting in insufficient capturing of effective information and lower tracking performance.To address the problem,a feature-enhanced Sparse Transformer target tracking algorithm is proposed.Feature extraction is performed based on Siamese network backbone.In feature enhancement module,the contextual information generated from multi-scale feature maps is utilized to enhance the local features.The most relevant features of Sparse Transformer are utilized to generate target focusing features,and position encoding is embedded to enhance the accuracy of tracking localization.The proposed tracking model is trained in an end-to-end manner,and extensive experiments are conducted on five datasets including OTB100,VOT2018,LaSOT,etc.The experimental results show that the proposed algorithm achieves better tracking performance and with a real-time tracking speed of 34 frames per second.

object trackingattention mechanismTransformerSparse Transformer

张丽君、李建民、侯文、王洁

展开 >

中北大学信息与通信工程学院,太原 030000

目标跟踪 注意力机制 Transformer Sparse Transformer

国家自然科学基金

62106238

2024

电光与控制
中国航空工业洛阳电光设备研究所

电光与控制

CSTPCD北大核心
影响因子:0.424
ISSN:1671-637X
年,卷(期):2024.31(5)
  • 20