首页|基于特征融合和模板更新的孪生网络跟踪算法

基于特征融合和模板更新的孪生网络跟踪算法

扫码查看
针对现有孪生网络跟踪算法仅使用主干网络最后一层的特征进行相似度匹配,以及缺少有效模板更新策略的问题,提出基于多尺度特征融合和自适应模板更新的孪生网络跟踪算法.首先,结合深度过参数化卷积设计非填充单元,提取更深层的前景特征和语义背景;然后,设计新的全局-局部特征融合模块,充分聚合浅、中层特征的全局和局部信息,捕获丰富的浅层外观特征和中层过渡特征;最后,采用自适应模板更新机制在线更新模板.为验证算法的有效性,在公开数据集上对所提算法进行详尽评估,实验结果显示,所提算法在OTB2015和VOT2018数据集上的精确度分别达到0.878和0.588,GOT10K数据集上平均重叠率达到0.526,优于其他主流算法.
A Siamese Network Tracking Algorithm Based on Feature Fusion and Template Update
To address the problems that the existing Siamese network tracking algorithm conducts similarity matching by merely employing the features of the last layer of the backbone network and it is lack of effective template update strategy,a Siamese network tracking algorithm is proposed based on multi-layer feature fusion and adaptive template update.Firstly,a novel zero padding unit is developed by combining deep over-parameterized convolution,and the deeper foreground features and semantic background are extracted.Secondly,a novel global-local feature fusion module is proposed for fully aggregating the global and local information of shallow layer features and capturing rich superficial features and transitional features of the middle layer.An adaptive template update mechanism is used to online update the template.Assessment is made on public benchmark dataset to verify the effectiveness of the algorithm and the experimental results show that,the proposed algorithm achieves the accuracy of 0.878 and 0.588 on the OTB2015 and VOT2018 datasets respectively,and the average overlap rate on the GOT10K dataset reaches 0.526,outperforming other algorithms.

object trackingSiamese networkcomputer applicationmulti-layer feature fusiontemplate update

吴国瑞、王峰、李杰

展开 >

太原理工大学电子信息与光学工程学院,山西晋中 030000

太原理工大学电气与动力工程学院,太原 030000

目标跟踪 孪生网络 计算机应用 多层特征融合 模板更新

2025

电光与控制
中国航空工业洛阳电光设备研究所

电光与控制

北大核心
影响因子:0.424
ISSN:1671-637X
年,卷(期):2025.32(1)