首页|基于特征增强和样本充分学习的红外飞机检测

基于特征增强和样本充分学习的红外飞机检测

扫码查看
针对深度学习单阶段检测算法对红外飞机目标的特征提取能力不足以及样本学习不充分的问题,提出基于特征增强的全局上下文机制(FEGCM)和样本充分学习的目标检测算法.FEGCM可获取包含目标的全局信息与局部信息的特征图,从而提高特征提取网络对目标特征的提取能力.通过在Focal Loss中添加调制因子,在关注难负样本学习的基础上,充分利用包含目标特性的部分易负样本,使得样本充分学习,从而帮助检测算法学习到更有意义的目标特征.实验表明,所提算法在自制红外飞机数据集上的mAP50达到96.9%,能够有效实现红外飞机目标检测.
Infrared Aircraft Detection Based on Feature Enhancement and Sufficient Sample Learning
Aiming at the problem that the deep learning single-stage detection algorithm has insufficient feature extraction ability and insufficient sample learning for infrared aircraft targets,a target detection algorithm is proposed based on Feature-Enhanced Global Context Mechanism(FEGCM)and sufficient sample learning.FEGCM can obtain feature images containing both global and local information,and the target feature extracting ability of feature extraction network is improved.By adding modulation factor into Focal Loss,it makes full use of some easy negative samples containing target characteristics on the basis of paying attention to the learning of difficult negative samples,so that the samples are learned sufficiently,which helps the detection algorithm learn more meaningful target features.Experiments show that the proposed algorithm has a mAP50 of 96.9%on the self-made infrared aircraft dataset,which can effectively realize infrared aircraft target detection.

infrared aircraft detectionglobal contextspatial attentionFocal Losseasy negative sample

徐红鹏、刘刚、司起峰、陈会祥

展开 >

河南科技大学信息工程学院,河南洛阳 471000

红外飞机检测 全局上下文 空间注意力 Focal Loss 易负样本

2025

电光与控制
中国航空工业洛阳电光设备研究所

电光与控制

北大核心
影响因子:0.424
ISSN:1671-637X
年,卷(期):2025.32(1)