首页|一种特征点权重自适应优化的动态SLAM算法

一种特征点权重自适应优化的动态SLAM算法

A dynamic SLAM algorithm for adaptive optimization of feature point weights

扫码查看
针对传统的同步定位与地图构建(SLAM)在动态场景中位姿估计准确率低、鲁棒性差的问题,提出一种基于特征点权重自适应优化的动态视觉SLAM算法.首先,利用掩膜区域卷积神经网络(Mask R-CNN)对输入图像进行语义分割并获取动态特征点掩码,在此基础上对静态特征点进行帧间匹配得到位姿变换初值;然后利用运动一致性检测算法和多视图几何算法处理图像并分别得到对应的动态特征点掩码,进而依据得到的3种动态特征点掩码信息构建特征点权重函数,利用最小化重投影误差自适应调整特征点对位姿优化的影响程度,降低场景中的动态目标对SLAM精度的影响;最后使用慕尼黑工业大学动态数据集进行仿真测试,在室内高动态场景中,绝对轨迹误差(ATE)的均方根误差值(RMSE)仅为尺度不变特征变换同步定位与地图构建(ORB-SLAM2)的3.1%.与DS-SLAM、DynaSLAM等动态SLAM系统相比,绝对轨迹误差分别为DS-SLAM的52%、DynaSLAM的86.1%.结果表明,该算法可以显著提高SLAM系统在高动态环境下的定位精度和鲁棒性.
Aiming at the problems of low accuracy and robustness of traditional simultaneous localization and mapping (SLAM) pose estimation in dynamic scenes, a dynamic visual SLAM algorithm based on adaptive optimization of feature point weights is proposed.Firstly, the Mask region convolutional neural network (Mask R-CNN) is used to semantically segment the input image and obtain the mask of the dynamic feature points.On this basis, the static feature points are matched between frames to obtain the initial pose transformation value.Then, the motion consistency detection algorithm and multi-view geometry algorithm are used to process the image and obtain the corresponding dynamic feature point masks respectively.Then, the weight function of the feature points is constructed according to the obtained information of the three dynamic feature points.The influence of the feature points on pose optimization is adjusted adaptively by minimizing the reprojection error, and the influence of the dynamic targets in the scene on the accuracy of SLAM is reduced.Finally, using the dynamic data set of Technical University of Munich for simulation test, the root mean square error (RMSE) of the absolute trajectory error (ATE) is only 3.1% of the scale invariant feature transform simultaneous localization and mapping (ORB-SLAM2) in the indoor high-dynamic scene.Compared with the dynamic SLAM system such as DS-SLAM and DynaSLAM, the absolute trajectory error is 52% of the DS-SLAM and 86.1% of the DynaSLAM.The results show that the proposed algorithm can significantly improve the localization accuracy and robustness of SLAM system in high dynamic environment.

visual SLAMdynamic scenesemantic segmentationmotion consistency detectionmulti-view geometryfeature point weight

张岩、王红旗、刘群坡、卜旭辉、赵怡佳

展开 >

河南理工大学 电气工程与自动化学院,河南 焦作 454003

河南省智能装备直驱技术与控制国际联合实验室,河南 焦作 454003

视觉SLAM 动态场景 语义分割 运动一致性检测 多视图几何 特征点权重

国家自然科学基金项目

U1804147

2024

导航定位学报

导航定位学报

CSTPCD北大核心
影响因子:0.72
ISSN:
年,卷(期):2024.12(3)
  • 11