首页|图结构特征稀疏化算法改进及参数确定

图结构特征稀疏化算法改进及参数确定

Improvement and parameter determination of feature sparsification algorithm based on graph theory structure

扫码查看
视觉同时定位与地图构建(SLAM)技术被广泛应用于自主导航、增强现实等领域,但系统内存占用和计算成本会随地图大小二次增长,为了在保证系统解算精度的前提下提升运行效率,在基于图结构的视觉特征稀疏化算法基础上,提出信息熵加权改进方案,实现稀疏化模块与SLAM主流程自适应连接,并通过实测实验分析了稀疏化算法各筛选指标重要性,评估了不同参数配置下算法稀疏化效果,进而确定出最优稀疏化算法参数.实验结果表明:引入自适应连接和信息熵加权改进及参数优化的稀疏化算法后,系统总耗时平均降低16.2%,绝对定位精度平均提升6%.
Visual Simultaneous Localization and Mapping (SLAM) technology is widely adapted to autonomous vehicles,drones and augmented reality devices. However,the memory footprint and computing cost grow quadratically with map size. To reduce the map size and computation cost while maintaining the pose localization accuracy,based on the basic graph optimization feature sparsification algorithm,an information entropy weighting approach is introduced. And an adaptive connection between the sparsification module and the main module of SLAM is proposed. The effect of the algorithm under different parameter configurations is evaluated to determine the best parameters. By extensive experimental evaluations we demonstrate the proposed method reduce the average total system processing time by 16.2%,and increase the average absolute positioning accuracy by 6%.

simultaneous localization and mapping (SLAM)feature sparsificationparameter adjustmentadaptiveinformation entropy

张雪晴、张小红、朱锋

展开 >

武汉大学 测绘学院,武汉 430079

湖北珞珈实验室,武汉 430079

武汉大学 中国南极测绘研究中心,武汉 430079

视觉同时定位与地图构建(SLAM) 特征稀疏化 参数优化 自适应 信息熵

2024

导航定位学报

导航定位学报

CSTPCD北大核心
影响因子:0.72
ISSN:
年,卷(期):2024.12(4)