首页|一种顾及局部结构的语义地图配准方法

一种顾及局部结构的语义地图配准方法

A semantic map registration method considering local structures

扫码查看
基于语义特征的环境地图构建与匹配定位具有较强的环境适应性,是自动驾驶和机器人领域中的研究热点,而语义地图配准是其中的一项关键环节.现有的大多数配准方法仅考虑语义特征间简单的数量和层次分布关系,在城市道路等语义特征高度重复的环境下容易配准失败,导致地图误差变大和定位精度下降等问题.基于图论中团的思想,提出了一种顾及局部结构的语义地图配准方法.首先,基于差异性更加显著的语义特征间相对距离和方位关系,构建包含局部结构信息的属性图,并建立属性图间的相似度计算准则.其次,设计粗-精级联的语义地图配准方法,粗配准阶段通过在属性图匹配时保持局部结构以获取稳健的初值,进而利用语义特征点云进行精配准,以提高地图配准的成功率.基于KAIST Urban数据集完成测试验证,与NGraph和SHD等经典算法相比,所提算法的配准成功率分别提高了约93.5%和74.0%,即使在语义特征重复的高相似度场景下,不依赖先验位姿也能完成鲁棒和精确的地图配准.
Semantic feature-based environment mapping and matching localization which has strong environmental adaptability is a research hotspot in the field of autonomous driving and robotics,and semantic map registration is one of the key links.Most of the existing registration methods only consider the simple quantitative and hierarchical distribution relationship between semantic features,which is prone to registration failure in highly repetitive semantic feature environments such as urban roads,resulting in larger map errors and decreased localization accuracy.Based on the idea of cliques in graph theory,a semantic map registration method that takes local structure into account is proposed.Firstly,based on the relative distance and orientation relationship be-tween semantic features with more significant differences,the attribute maps containing local structure information are constructed and the similarity calculation criterion between attribute maps is established.Secondly,a semantic map registration method for coarse-fine cascades is de-signed,and a robust initial value of the map registration is obtained by keeping local structure when matching attribute graphs in the coarse registration stage,and then the semantic feature point cloud is utilized for fine registration to improve the success rate of map registration.Based on the KAIST Urban dataset,the proposed algorithm is tested and validated,and compared with the classical algorithms such as neighbourhood graph(NGraph)and semantic histogram descriptor(SHD),the registration success rate of using the proposed algorithm is improved by about 93.5%and 74.0%,respectively,and map registration can be completed robustly and accurately without relying on prior poses,even in high similarity scenarios with semantic repetition.

Semantic map registrationAttribute graphLocal structuresRobotAutonomous driving

丁枫生、纪新春、魏东岩、张文超、李锴

展开 >

中国科学院空天信息创新研究院,北京 100094

中国科学院大学电子电气与通信工程学院,北京 100049

西北工业大学电子信息学院,西安 710114

语义地图配准 属性图 局部结构 机器人 自动驾驶

国家自然科学基金青年基金

42204048

2024

导航定位与授时

导航定位与授时

CSTPCD
ISSN:
年,卷(期):2024.11(4)
  • 4