首页|面向室内弱纹理场景多特征融合RGB-D SLAM方法

面向室内弱纹理场景多特征融合RGB-D SLAM方法

Multi-feature fusion RGB-D SLAM method for indoor weak texture scenes

扫码查看
针对室内弱纹理场景下特征点数量不足导致即时定位与建图(SLAM)系统跟踪丢失和重建精度差的问题,提出了一种顾及约束退化的多特征融合RGB-D SLAM算法.为了充分利用线和平面特征对位姿估计的约束,分别建立了线和平面误差方程,并通过对海森矩阵进行特征值分解,定量分析了线和平面特征位姿约束的退化情况,建立了顾及约束退化的多特征融合目标优化函数.此外,基于曼哈顿世界假设,建立了曼哈顿坐标系,充分利用曼哈顿世界假设的优势,对旋转矩阵的"零漂移"进行估计,以提供准确的初始值支持平面匹配和位姿优化.实验结果表明,引入线和面特征建立光束法方程后,所提出的方法在弱纹理数据集ICL-NUIM上的轨迹精度相较于基准的ORB-SLAM2平均提升了 37.5%,有效改善了 SLAM系统在弱纹理场景中的轨迹精度.
A multi-feature fusion RGB-D SLAM algorithm considering constraint degradation is proposed to solve the problem of tracking loss and reduced reconstruction accuracy in SLAM sys-tem due to insufficient number of feature points in indoor scenes with weak texture.In order to exploit the constraints provided by line and plane features for pose estimation,error equations for lines and planes are established respectively.By performing an eigenvalue decomposition of the Hessian matrix,the degradation of pose constraints imposed by line and plane features is quantita-tively analyzed,paving the way for the establishment of a multi-feature fusion objective optimiza-tion function that considers constraint degradation.In addition,by exploiting the Manhattan World assumption,a Manhattan coordinate system is established to estimate the zero drift of the rotation matrix,providing accurate initial values to support plane matching and pose optimization.Experimental results show that after introducing line and plane features to establish the bundle ad-justment equation,the proposed method improves the trajectory accuracy on the low-texture dataset ICL-NUIM by 37.5%compared to the benchmark ORB-SLAM2,effectively improving the trajectory accuracy of SLAM systems in weakly textured environments.

Simultaneous localization and mapping(SLAM)Multi-feature fusionIndoor weak texture scenesManhattan World assumptionRGB-D cameraConstrained degradation

王西旗、毕京学、杨尚帅

展开 >

山东建筑大学交通工程学院,济南 250101

山东建筑大学测绘地理信息学院,济南 250101

自然资源部第一地形测量队,西安 710054

即时定位与建图 多特征融合 室内弱纹理场景 曼哈顿世界假设 RGB-D相机 约束退化

国家自然科学基金

42001397

2024

导航定位与授时

导航定位与授时

CSTPCD
ISSN:
年,卷(期):2024.11(5)
  • 1