首页|基于位置信息指纹的蓝牙/WiFi混合定位方法

基于位置信息指纹的蓝牙/WiFi混合定位方法

Hybrid positioning method using bluetooth and WiFi based on location information fingerprint

扫码查看
针对蓝牙/无线保真(WiFi)混合定位精度不理想、稳定性差等问题,提出了基于位置信息指纹的蓝牙/WiFi混合定位方法,该方法由离线阶段与在线阶段组成.在离线阶段,首先将采集的蓝牙/WiFi信号强度分为2组,第1组用于构建蓝牙、WiFi和蓝牙/WiFi混合指纹库;第2组作为训练指纹,分别与蓝牙、WiFi及蓝牙/WiFi混合指纹库匹配定位,以获得蓝牙、WiFi及蓝牙/WiFi混合指纹估计位置.随后,基于指纹估计位置和参考点构建位置信息指纹库.在在线阶段,先进行蓝牙、WiFi和蓝牙/WiFi混合指纹定位,然后结合蓝牙、WiFi和混合指纹估计位置生成在线位置信息指纹,最后,利用K近邻(KNN)算法实现与位置信息指纹库的匹配定位.实验结果表明,提出方法在2个公开数据集上的定位效果明显优于加权K近邻(WKNN)、高斯过程回归(GPR)和支持向量机(SVM)方法.在数据集一中,提出方法的均方根误差(RMSE)比 WKNN、GPR和SVM最少减小了41.21%、48.33%和67.56%;在数据集二中,提出方法的平均绝对误差(MAE)为 0.914 m,远优于 WKNN、GPR 和 SVM.
To address the issues of poor accuracy and stability in Bluetooth/WiFi hybrid positio-ning,a hybrid positioning method using Bluetooth and WiFi based on location information finger-print is proposed,which includes an offline phase and an online phase.In the offline phase,Blue-tooth and WiFi signal strength data are collected and segmented into two groups.The first group is used to construct Bluetooth,WiFi,and Bluetooth/WiFi hybrid fingerprint databases,while the second group is used to train fingerprints,which are subsequently matched with the Bluetooth,WiFi,and hybrid fingerprint databases to estimate positions for Bluetooth,WiFi,and Bluetooth/WiFi.A location information fingerprint database is then constructed based on these estimated po-sitions and reference points.In the online phase,Bluetooth,WiFi,and Bluetooth/WiFi hybrid fingerprint positioning is performed.The estimated positions of Bluetooth,WiFi,and hybrid fin-gerprints are combined to generate online location information fingerprints,which are then matched with the location information fingerprint database using the K-nearest neighbors(KNN)algorithm.Experimental results show that the proposed method significantly outperforms weighted K-nearest neighbors(WKNN),Gaussian process regression(GPR),and support vector machine(SVM)methods in terms of positioning accuracy on two public datasets.In Dataset 1,the root mean square error(RMSE)of the proposed method decreased by at least 41.21%,48.33%,and 67.56%compared to WKNN,GPR,and SVM,respectively.In Dataset 2,the mean absolute error(MAE)of the proposed method was 0.914 meters,significantly outperforming WKNN,GPR,and SVM.

BluetoothWiFiHybrid fingerprintLocation information fingerprintBluetooth/WiFi hybrid positioning

朱勇、黄瑞、徐益

展开 >

扬州市职业大学资源与环境工程学院,江苏扬州 225009

蓝牙 WiFi 混合指纹 位置信息指纹 蓝牙/WiFi混合定位

2024

导航定位与授时

导航定位与授时

CSTPCD
ISSN:
年,卷(期):2024.11(6)