首页|基于图像特征值提取的航空γ能谱数据调平方法

基于图像特征值提取的航空γ能谱数据调平方法

扫码查看
图像特征值提取是利用数学方法求解图像数据在空间分布上的非线性不确定问题,传统的航空γ能谱数据调平方法由于依赖于技术人员的经验判断而极易引入误差.基于此问题,提出了一种基于航空γ能谱图像特征值提取的调平方法,利用特征聚类将数据划分为条带和背景以保护未受到条带噪声污染的数据,从而使调平后的数据更接近真实的γ场.在沿测线进行处理的同时,在测线和切割线两个方向进行邻域点搜寻,避免了插值引入的误差并充分考虑了数据在空间上的联系.最后,结合改进样本熵,使得调平过程中地质背景信息保存完整.结果表明,基于图像特征值提取的航空γ能谱数据调平方法能有效去除条带异常,异常点占比仅为30% ~50%.
Airborne Gamma-ray Spectrum Data Leveling Method Based on Image Eigenvalue Extraction
The extraction of image eigenvalue is the utilization of mathematical methods to solve the non-linear uncer-tainty problem of spatial distribution in image data. Traditional methods for leveling airborne gamma-ray spectrum data are highly susceptible to errors due to their reliance on the experiential judgment of technical personnel. Based on this problem, a leveling method for airborne gamma-ray spectrum data using image eigenvalue extraction is proposed in the paper. This method utilizes feature clustering to partition the data into strips and background, preserving data unaffected by strip noise contamination, thereby making the leveled data closer to the real Earth radiation field. While processing along the measure-ment line, neighborhood point search is conducted in both the measurement and cutting directions, avoiding errors intro-duced by interpolation and fully considering the spatial relationships in the data. Finally, combined with the improved sam-ple entropy, geological background information is preserved intact during the leveling process. The results indicate that air-borne gamma-ray spectrum data leveling method based on image eigenvalue extraction can effectively eliminate strip anoma-lies, with anomalous points accounting for only 30% ~50%.

image eigenvalue extractionaerial gamma-ray datafeature clusteringstriping noisesample entropy

熊超、邱小剑、王欣、付珍、赵瑄、骆博雅、吴和喜

展开 >

江西省军民融合研究院,南昌330049

东华理工大学核科学与工程学院,南昌330013

图像特征值提取 航放数据 特征聚类 条带噪声 样本熵

国家自然科学基金青年基金国家自然科学基金地区基金江西省军民融合创新平台(江西省军民融合研究院博士后创新实践基地)项目

122050441226500322ZK01

2024

导航与控制
北京航天控制仪器研究所

导航与控制

CSTPCD
影响因子:0.133
ISSN:1674-5558
年,卷(期):2024.23(1)