首页|基于目标特征分布增强卷积神经网络的红外目标检测算法

基于目标特征分布增强卷积神经网络的红外目标检测算法

扫码查看
为了实现对水上红外弱小目标的探测,并减少由红外图像信噪比低、目标与背景的红外特征差异小等问题对检测结果的影响,通过结合红外图像的成分、纹理及目标形状特征,提出了基于目标特征分布增强卷积神经网络的红外目标检测(TFD_CNN)算法.该算法包含目标特征分布学习与深度神经网络,具备滤除红外图像中噪声的能力,并深度挖掘红外图像中目标的边缘、纹理及形状信息,提升了卷积神经网络的分类精度.通过与4种算法进行实验对比,TFD_CNN算法分类准确率为96%,高于其他算法.结果表明:TFD_CNN算法具备对红外图像中落水人员与船只的分类能力.
Infrared Target Detection Algorithm Based on Target Feature Distribution Enhanced Convolutional Neural Network
In order to achieve the detection of infrared weak small maritime targets and reduce the impact of low sig-nal-to-noise ratio of infrared images and small differences in infrared features between targets and backgrounds on the detec-tion results, a infrared target detection algorithm based on target feature distribution enhanced convolutional neural network ( TFD_CNN) is proposed by combining the composition, texture, and target shape features of infrared images. The algo-rithm includes target feature distribution learning and deep neural networks, which has the ability to filter out noise in infra-red images and deeply mines the edge, texture and shape information of the target in the infrared image to improve the clas-sification accuracy of the convolutional neural network. Through the experimental comparison with four other algorithms, the classification accuracy of the TFD_CNN algorithm is 96%, which is higher than other algorithms. The results show that the TFD_CNN algorithm has the ability to classify drowning persons and ships in the infrared image.

infrared weak small targettarget feature distribution learningdeep learningobject classification

丁胜男、李威、蔡立明、李蒙、胡常青

展开 >

航天时代(青岛)海洋装备科技发展有限公司,青岛266237

北京航天控制仪器研究所,北京100039

红外弱小目标 目标特征分布学习 深度学习 目标分类

国家自然科学基金国家自然科学基金

6197115362271159

2024

导航与控制
北京航天控制仪器研究所

导航与控制

CSTPCD
影响因子:0.133
ISSN:1674-5558
年,卷(期):2024.23(1)