首页|基于先验地图约束的多传感器融合定位

基于先验地图约束的多传感器融合定位

扫码查看
移动机器人定位技术是实现移动机器人自主任务执行的核心基础.通过精准定位,移动机器人能有效地进行路径规划和控制、目标检测等任务.针对大尺度复杂场景下地面移动机器人定位算法累计误差大、精度低、实时性差的问题,提出了一种基于先验点云地图约束的融合多线激光雷达、惯性测量单元和GNSS的定位算法.首先,利用先验地图中保存的GNSS信息和关键帧与当前获取的GNSS测量值和激光帧对机器人位姿进行初始化;然后,对惯性测量单元进行预积分估计机器人位姿,由估计位姿的邻近关键帧构建局部地图;最后,与当前激光帧进行配准,从而完成机器人精确定位.在公开数据集和真实场景中的大量实验结果表明,所提算法相较于已有算法,精度提升约20%,定位速度提升约1%.基于先验地图的多传感器融合定位方法在大尺度复杂场景下有着更高的精度和可靠性,可作为农林、城区等大规模场景下的移动机器人定位解决方案.
Multi-sensor Fusion Positioning Based on Prior Map Constraints
The core foundation for the autonomous execution of tasks by mobile robots lies in their localization tech-nology.Through precise positioning,mobile robots can effectively carry out tasks such as path planning and control,and target detection.Aiming at the significant accumulative error,low accuracy and poor real-time performance of ground mo-bile robot positioning algorithms in large-scale complex scenes,a positioning algorithm based on a priori point cloud map constraints integrating multi-line LiDAR,inertial measurement unit (IMU) and GNSS is proposed.Initially,the robot pose is initialized using the GNSS information and key frames saved in the prior map with the currently acquired GNSS measure-ment values and laser frames.Subsequently,the IMU is pre-integrated to estimate the robot pose,and a local map is con-structed using the adjacent key frames of the estimated pose.Finally,this local map is registered with the current laser frame,thus achieving precise positioning of mobile robots.High volumes of experimental results from both public datasets and real scenes demonstrate that,compared with existing algorithms,the proposed algorithm improves accuracy by about 20% and localization speed by about 1%.The multi-sensor fusion positioning algorithm based on prior maps provides high-er accuracy and reliability in large-scale complex scenes,and can be used as a practicable positioning solution for mobile robots in a wide range of large-scale settings,from rural and forest scenes to urban areas.

large-scale scenesmobile robotsprior mapmulti-sensor fusionLiDAR

王春普、孙波、刘儒瑜

展开 >

福州大学先进制造学院,泉州362200

中国科学院海西研究院泉州装备制造研究中心,泉州362200

杭州师范大学信息科学与技术学院,杭州311121

大尺度场景 移动机器人 先验地图 多传感器融合 激光雷达

国家自然科学基金青年基金中国博士后科学基金资助项目

622021372023M730599

2024

导航与控制
北京航天控制仪器研究所

导航与控制

CSTPCD
影响因子:0.133
ISSN:1674-5558
年,卷(期):2024.23(2)
  • 5