首页|基于优化预积分的因子图多源融合导航方法

基于优化预积分的因子图多源融合导航方法

扫码查看
针对传统因子图算法无法充分发挥高精度惯性器件的优势而导致导航误差偏大的问题,提出了一种基于优化预积分的因子图多源融合导航方法.探讨了传统因子图算法中IMU因子建模不够精确的问题,考虑了地球自转以及载体运动引起的角速率对算法精度的影响,优化了传统因子图惯性预积分的过程,并基于优化预积分的方法进行了航迹仿真,测试了在GNSS信号良好与阶段性拒止情况下的定位精度.仿真结果表明,对于导航级别的惯性导航系统,基于优化预积分的因子图算法在水平方向的均方根误差小于1m.在GNSS信号良好的情况下,与EKF算法和传统的因子图方法相比,使用基于优化预积分的因子图算法的水平定位精度分别提高了8.57%和9.52%;在GNSS阶段性拒止的情况下,与传统的因子图方法相比,其水平定位精度提高了28.29%;在GNSS长时间拒止的情况下与传统的因子图方法相比,其水平定位精度提高了24.83%.
Multi-source Fusion Navigation Method Based on Optimized Pre-integrated Factor Graph
To address the issue that traditional factor graph algorithm cannot give fully play to the advantages of high-precision inertial devices,and lead to significant navigation errors,a factor graph multi-source fusion navigation method based on optimized pre-integration is proposed.The inaccuracy of IMU factor modeling in traditional factor graph algorithm is explored,considering the impact of Earth's rotation and the angular velocity caused by carrier motion on algorithm accu-racy.The process of inertial pre-integration traditional factor graph is optimized,the trajectory simulation based on the opti-mized pre-integration method is performed and the positioning accuracy is tested under conditions of good GNSS signals and phased GNSS-denied.The simulation results show that for navigation-grade inertial navigation systems,the root mean square error in the horizontal direction of the factor graph algorithm based on optimized pre-integration is less than 1 m.Un-der the condition of good GNSS signal,the horizontal positioning accuracy of the factor graph algorithm based on optimized pre-integration is improved by 8.57%and 9.52%compared with the EKF algorithm and the traditional factor graph meth-od,respectively.In case of phased GNSS denial,the horizontal positioning accuracy is improved by 28.29%compared with traditional factor graph method.And the horizontal positioning accuracy is improved by 24.83%compared with the traditional factor graph method in case of long-term GNSS denial.

Inertial Navigation System(INS)Global Navigation Satellite System(GNSS)Factor Graph Optimiza-tion(FGO)multi-source fusion navigation system

张兢羽、张林、徐文祥、刘聪

展开 >

北京航天时代激光导航技术责任有限公司,北京 100094

惯性导航系统 全球卫星导航系统 因子图优化 多源融合导航系统

2024

导航与控制
北京航天控制仪器研究所

导航与控制

CSTPCD
影响因子:0.133
ISSN:1674-5558
年,卷(期):2024.23(4)