首页|基于Transformer金字塔网络的无人机自主导航算法研究

基于Transformer金字塔网络的无人机自主导航算法研究

扫码查看
针对复杂环境下高效利用多源异构传感数据进行自主导航的问题,提出一种新的神经网络架构实现快速数据融合与航迹规划.设计轻量化金字塔特征网络,在多级深度特征结构中引入Transformer网络结构,并构建注意力池化层,在提升特征表示能力的同时降低计算复杂度,实现快速鲁棒的轨迹预测.基于虚幻引擎与AirSim设计无人机仿真系统,利用训练得到的模型控制无人机进行大量自主飞行仿真实验.实验结果表明,所提算法可以快速实现多源异构信息融合,实时稳定地生成可行轨迹,实现复杂障碍环境下的自主避障,飞行成功率达 81%,有效提升无人机自主导航能力.
Research on Transformer Pyramid Networks Based Unmanned Aerial Vehicles Autonomous Navigation Algorithm
For addressing the problem of efficiently utilizing multi-sensor heterogeneous data in complex environ-ments for autonomous navigation,a new neural network architecture is proposed to achieve fast data fusion and trajectory planning.A lightweight pyramid feature network is designed for trajectory prediction,where an efficient Transformer net-work structure is introduced into the multi-level deep feature,and a pooling attention layer is constructed,which improves the feature representation ability while reducing the computational complexity and realizes the fast and robust trajectory pre-diction.Based on Unreal Engine and AirSim,the UAV simulation system is designed,and a large number of autonomous flight simulation experiments are conducted by controlling the UAV with the trained model.The experimental results show that the proposed algorithm can quickly achieve multi-sensor heterogeneous information fusion,generate feasible trajectories in real time and stably,realize autonomous obstacle avoidance in complex obstacle environments with a success rate of up to 81%,and effectively improve the autonomous navigation ability of UAVs.

Transformerneural networksinformation fusionintegrated navigationtrajectory planningautono-mous navigation

朱日东、余威、孙猛、马宝全、冯笛恩

展开 >

中国航天科技集团有限公司第九研究院无人体系中心,北京 100094

航天时代飞鸿技术有限公司,北京 100094

Transformer 神经网络 信息融合 组合导航 轨迹规划 自主导航

2024

导航与控制
北京航天控制仪器研究所

导航与控制

CSTPCD
影响因子:0.133
ISSN:1674-5558
年,卷(期):2024.23(4)