首页|基于神经常微分方程的深度Q网络车辆导航避障算法研究

基于神经常微分方程的深度Q网络车辆导航避障算法研究

扫码查看
实现车辆的有效避障对于提升自动驾驶系统的安全性和可靠性具有重要意义.近年来,以深度Q网络算法(DQN算法)为代表的深度强化学习方法被广泛用于车辆避障问题的研究.然而,DQN算法中的多层感知机在处理小样本数据时易发生过拟合,导致其泛化能力不足.为了解决这一问题,提出了一种基于神经常微分方程的深度Q网络算法,即NODQN算法.该算法使用神经常微分方程替代传统DQN算法中的多层感知机用于Q值函数逼近.实验结果表明,在三种典型的仿真场景中,NODQN算法在到达率、碰撞率和平均奖励等性能指标上比DQN算法均表现出显著优势,并且平均最大偏移量比DQN算法更低.综上所述,NODQN算法有效改善了传统DQN算法在处理小样本数据时的过拟合问题,表现出更强的泛化能力和更高的稳定性,从而在车辆避障任务中提升了系统的安全性与可靠性.
Research on Vehicle Obstacle Avoidance Navigation Algorithm Based on Neural Ordinary Differential Equation Deep Q-Network
The effective obstacle avoidance of vehicles is crucial for enhancing the safety and reliability of autono-mous driving systems.In recent years,deep reinforcement learning methods represented by Deep Q-Network(DQN)algo-rithms have been widely applied to research on vehicle obstacle avoidance.However,the multilayer perceptrons in the DQN algorithm tend to overfit when handling small sample data,leading to insufficient generalization ability.To address this is-sue,a Deep Q-Network algorithm based on neural ordinary differential equation is proposed,referred to as NODQN.The proposed NODQN algorithm replaces the multilayer perceptrons in the traditional DQN algorithm with Neural ODE for Q-value function approximation.Experimental results demonstrate that in three typical simulation scenarios,the NODQN algo-rithm outperforms the DQN algorithm across key performance metrics,including success rate,collision rate and average re-ward.Additionally,the NODQN algorithm exhibits a lower average maximum offset compared to the DQN algorithm.In conclusion,the NODQN algorithm effectively improves the overfitting issue of the traditional DQN algorithms when handling small sample data,demonstrating stronger generalization ability and higher stability,thereby enhancing the safety and relia-bility of the system in vehicle obstacle avoidance tasks.

vehicle obstacle avoidanceDeep Q-Network(DQN)neural ordinary differential equation(Neural ODE)generalizationstability

李嘉巍、陈巍

展开 >

北京航空航天大学人工智能学院,北京 100191

车辆避障 深度Q网络 神经常微分方程 泛化性 稳定性

2024

导航与控制
北京航天控制仪器研究所

导航与控制

CSTPCD
影响因子:0.133
ISSN:1674-5558
年,卷(期):2024.23(4)