首页|基于二阶锥规划的飞行器滑翔段轨迹优化

基于二阶锥规划的飞行器滑翔段轨迹优化

扫码查看
针对临近空间飞行器在滑翔段面临过程约束多、飞行环境复杂的难点,为提高轨迹优化的求解速度和精度,研究二阶锥规划(SOCP)在滑翔段的轨迹优化.首先将不同量纲下的运动参数进行归一化处理,使用无量纲的能量作为自变量建立数学模型,对滑翔段飞行的热流、动压、过载等过程约束,结合终端约束和禁飞区,确立滑翔段飞行走廊,将滑翔段飞行的运动方程、性能指标、过程约束等进行凸化处理,转化为SOCP问题的一般形式.基于高升阻比飞行器CAV-H的气动模型,以最短时间为优化目标,使用原对偶内点法进行求解,得到满足约束的优化轨迹.通过仿真算例,对 10519 km 的滑翔段,SOCP 算法实现 39s 收敛,终点误差仅289 m,验证了二阶锥规划在滑翔段进行轨迹优化的快速性和精度,具有在线生成轨迹的潜力,可以进一步拓展工程应用.
Trajectory Optimization of Aircraft Glide Phase Based on Second-order Cone Programming
In order to improve the speed and accuracy of trajectory optimization,second-order cone programming(SOCP)is studied in the gliding phase of near space vehicles,which face the challenges of multiple process constraints and complex flight environments.The motion parameters under different dimensions are normalized,and the non-dimension en-ergy is used as the independent variable to establish a mathematical model.The flight corridor of the glide phase is estab-lished based on the process constraints of heat flow,dynamic pressure,overload,etc.,combined with terminal constraints and no-fly zone.The motion equations,performance indexes and process constraints of the glide phase are convex and transformed into the general form of SCOP.Based on the aerodynamic model of high-lift-drag aircraft CAV-H,taking the shortest time as the optimization objective,the primal-dual interior method is used to solve the problem,and the optimal trajectory satisfying the constraints is obtained.Through simulation examples,for a gliding phase of 10519 km,the SOCP algorithm achieved 39 s convergence with an endpoint error of only 289 m,verifying the speed and accuracy of second-order cone programming for trajectory optimization in the gliding phase.It has the potential for online trajectory generation and can further expand engineering applications.

second-order cone programmingtrajectory programminggliding phaseprime-dual interior point method

熊文祥、陈倩、汪守利、杨贵玉、杨钊

展开 >

北京遥测技术研究所,北京 100094

二阶锥规划 轨迹规划 滑翔段 原对偶内点法

2024

导航与控制
北京航天控制仪器研究所

导航与控制

CSTPCD
影响因子:0.133
ISSN:1674-5558
年,卷(期):2024.23(5)